Maple 2018.2 Integration Test Results
on the problems in "7 Inverse hyperbolic functions/7.4 Inverse hyperbolic cotangent"
Test results for the 80 problems in "7.4.1 Inverse hyperbolic cotangent functions.txt"
Problem 6: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccoth}(a x)^{2} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 5 steps):

$$
\frac{x \operatorname{arccoth}(a x)}{a}-\frac{\operatorname{arccoth}(a x)^{2}}{2 a^{2}}+\frac{x^{2} \operatorname{arccoth}(a x)^{2}}{2}+\frac{\ln \left(-a^{2} x^{2}+1\right)}{2 a^{2}}
$$

Result(type 3, 154 leaves):
$\frac{x^{2} \operatorname{arccoth}(a x)^{2}}{2}+\frac{x \operatorname{arccoth}(a x)}{a}+\frac{\operatorname{arccoth}(a x) \ln (a x-1)}{2 a^{2}}-\frac{\operatorname{arccoth}(a x) \ln (a x+1)}{2 a^{2}}+\frac{\ln (a x-1)^{2}}{8 a^{2}}-\frac{\ln (a x-1) \ln \left(\frac{a x}{2}+\frac{1}{2}\right)}{4 a^{2}}+\frac{\ln (a x-1)}{2 a^{2}}$

$$
+\frac{\ln (a x+1)}{2 a^{2}}+\frac{\ln \left(-\frac{a x}{2}+\frac{1}{2}\right) \ln \left(\frac{a x}{2}+\frac{1}{2}\right)}{4 a^{2}}-\frac{\ln \left(-\frac{a x}{2}+\frac{1}{2}\right) \ln (a x+1)}{4 a^{2}}+\frac{\ln (a x+1)^{2}}{8 a^{2}}
$$

Problem 7: Result more than twice size of optimal antiderivative.
$\int \operatorname{arccoth}(a x)^{2} \mathrm{~d} x$
Optimal(type 4, 58 leaves, 5 steps):

$$
\frac{\operatorname{arccoth}(a x)^{2}}{a}+x \operatorname{arccoth}(a x)^{2}-\frac{2 \operatorname{arccoth}(a x) \ln \left(\frac{2}{-a x+1}\right)}{a}-\frac{\operatorname{polylog}\left(2,1-\frac{2}{-a x+1}\right)}{a}
$$

Result(type 4, 121 leaves):

Problem 8: Result more than twice size of optimal antiderivative.

Optimal(type 4, 93 leaves, 6 steps):
$2 \operatorname{arccoth}(a x)^{2} \operatorname{arccoth}\left(1-\frac{2}{-a x+1}\right)+\operatorname{arccoth}(a x) \operatorname{polylog}\left(2,1-\frac{2}{a x+1}\right)-\operatorname{arccoth}(a x) \operatorname{polylog}\left(2,1-\frac{2 a x}{a x+1}\right)+\frac{\operatorname{polylog}\left(3,1-\frac{2}{a x+1}\right)}{2}$

$$
-\frac{\operatorname{polylog}\left(3,1-\frac{2 a x}{a x+1}\right)}{2}
$$

Result(type 4, 486 leaves):

$$
\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right) \operatorname{arccoth}(a x)^{2}}{2}
$$

$$
-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{2} \operatorname{arccoth}(a x)^{2}}{2}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{2} \operatorname{arccoth}(a x)^{2}}{2}
$$

$$
+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{3} \operatorname{arccoth}(a x)^{2}}{2}+\operatorname{arccoth}(a x)^{2} \ln \left(\frac{a x+1}{a x-1}-1\right)-\operatorname{arccoth}(a x)^{2} \ln \left(1+\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-2 \operatorname{arccoth}(a x) \operatorname{polylog}(2,
$$

$$
\left.-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)+2 \text { polylog }\left(3,-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-\operatorname{arccoth}(a x)^{2} \ln \left(1-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-2 \operatorname{arccoth}(a x) \operatorname{polylog}\left(2, \frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)+2 \text { polylog }(3
$$

$$
\left.\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)+\operatorname{arccoth}(a x) \operatorname{polylog}\left(2,-\frac{a x+1}{a x-1}\right)-\frac{\operatorname{polylog}\left(3,-\frac{a x+1}{a x-1}\right)}{2}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccoth}(a x)^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 55 leaves, 4 steps):

$$
a \operatorname{arccoth}(a x)^{2}-\frac{\operatorname{arccoth}(a x)^{2}}{x}+2 a \operatorname{arccoth}(a x) \ln \left(2-\frac{2}{a x+1}\right)-a \operatorname{polylog}\left(2,-1+\frac{2}{a x+1}\right)
$$

Result(type 4, 158 leaves):
$-\frac{\operatorname{arccoth}(a x)^{2}}{x}-a \operatorname{arccoth}(a x) \ln (a x+1)-a \operatorname{arccoth}(a x) \ln (a x-1)+2 a \ln (a x) \operatorname{arccoth}(a x)-\frac{a \ln (a x-1)^{2}}{4}+a \operatorname{dilog}\left(\frac{a x}{2}+\frac{1}{2}\right)$

$$
+\frac{a \ln (a x-1) \ln \left(\frac{a x}{2}+\frac{1}{2}\right)}{2}-\frac{a \ln \left(-\frac{a x}{2}+\frac{1}{2}\right) \ln (a x+1)}{2}+\frac{a \ln \left(-\frac{a x}{2}+\frac{1}{2}\right) \ln \left(\frac{a x}{2}+\frac{1}{2}\right)}{2}+\frac{a \ln (a x+1)^{2}}{4}-a \operatorname{dilog}(a x+1)
$$

$-a \ln (a x) \ln (a x+1)-a \operatorname{dilog}(a x)$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int x^{5} \operatorname{arccoth}(a x)^{3} \mathrm{~d} x
$$

Optimal(type 4, 160 leaves, 33 steps):

$$
\begin{aligned}
& \frac{19 x}{60 a^{5}}+\frac{x^{3}}{60 a^{3}}+\frac{4 x^{2} \operatorname{arccoth}(a x)}{15 a^{4}}+\frac{x^{4} \operatorname{arccoth}(a x)}{20 a^{2}}+\frac{23 \operatorname{arccoth}(a x)^{2}}{30 a^{6}}+\frac{x \operatorname{arccoth}(a x)^{2}}{2 a^{5}}+\frac{x^{3} \operatorname{arccoth}(a x)^{2}}{6 a^{3}}+\frac{x^{5} \operatorname{arccoth}(a x)^{2}}{10 a}-\frac{\operatorname{arccoth}(a x)^{3}}{6 a^{6}} \\
& \quad+\frac{x^{6} \operatorname{arccoth}(a x)^{3}}{6}-\frac{19 \operatorname{arctanh}(a x)}{60 a^{6}}-\frac{23 \operatorname{arccoth}(a x) \ln \left(\frac{2}{-a x+1}\right)}{15 a^{6}}-\frac{23 \operatorname{polylog}\left(2,1-\frac{2}{-a x+1}\right)}{30 a^{6}}
\end{aligned}
$$

Result(type 4, 1140 leaves):
$\frac{23 \operatorname{arccoth}(a x)^{2}}{30 a^{6}}-\frac{\operatorname{arccoth}(a x)^{3}}{6 a^{6}}+\frac{x^{6} \operatorname{arccoth}(a x)^{3}}{6}+\frac{4 x^{2} \operatorname{arccoth}(a x)}{15 a^{4}}+\frac{x^{4} \operatorname{arccoth}(a x)}{20 a^{2}}+\frac{x \operatorname{arccoth}(a x)^{2}}{2 a^{5}}+\frac{x^{3} \operatorname{arccoth}(a x)^{2}}{6 a^{3}}+\frac{x^{5} \operatorname{arccoth}(a x)^{2}}{10 a}$

$$
-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{a x-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{(a x-1)\left(\frac{a x+1}{a x-1}-1\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{arccoth}(a x)^{2}}{8 a^{6}}+\frac{x}{80 a^{5}\left(\sqrt{\left.\frac{a x-1}{a x+1} a x+\sqrt{\frac{a x-1}{a x+1}}+a x\right)}\right.}
$$

$$
-\frac{23 \operatorname{arccoth}(a x) \ln \left(1+\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)}{15 a^{6}}-\frac{41 \sqrt{\frac{a x-1}{a x+1}}}{120 a^{6}\left(\sqrt{\frac{a x-1}{a x+1}}-1\right)}-\frac{41 \sqrt{\frac{a x-1}{a x+1}}}{120 a^{6}\left(\sqrt{\frac{a x-1}{a x+1}}+1\right)}+\frac{\operatorname{arccoth}(a x)^{2} \ln (a x-1)}{4 a^{6}}
$$

$$
-\frac{\operatorname{arccoth}(a x)^{2} \ln (a x+1)}{4 a^{6}}-\frac{\operatorname{arccoth}(a x)^{2} \ln \left(\frac{a x-1}{a x+1}\right)}{4 a^{6}}+\frac{\sqrt{\frac{a x-1}{a x+1}}}{120 a^{6}\left(2 \sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}}-2 a x+1\right)}
$$

$$
\begin{aligned}
& +\frac{\sqrt{\frac{a x-1}{a x+1}}}{120 a^{6}\left(2 \sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}}+2 a x-1\right)}-\frac{x}{80 a^{5}\left(\sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}-a x}\right)}+\frac{1}{80 a^{6}\left(\sqrt{\frac{a x-1}{a x+1} a x+\sqrt{\frac{a x-1}{a x+1}}-a x}\right)} \\
& -\frac{1}{80 a^{6}\left(\sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}}+a x\right)}-\frac{23 \operatorname{dilog}\left(1+\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)}{15 a^{6}}+\frac{23 \operatorname{dilog}\left(\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)}{15 a^{6}}-\frac{19 \operatorname{arccoth}(a x)}{60 a^{6}} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{a x-1}\right)^{3} \operatorname{arccoth}(a x)^{2}}{8 a^{6}}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{(a x-1)\left(\frac{a x+1}{a x-1}-1\right)}\right)^{3} \operatorname{arccoth}(a x)^{2}}{8 a^{6}} \\
& -\sqrt{\frac{a x-1}{a x+1}} x \quad-\quad \sqrt{\frac{a x-1}{a x+1}} x \\
& 120 a^{5}\left(2 \sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}}-2 a x+1\right) \quad-\overline{120 a^{5}\left(2 \sqrt{\frac{a x-1}{a x+1}} a x+\sqrt{\frac{a x-1}{a x+1}}+2 a x-1\right)} \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\sqrt{\frac{a x-1}{a x+1}}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{a x-1}\right)^{2} \operatorname{arccoth}(a x)^{2}}{4 a^{6}}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{a x-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{(a x-1)\left(\frac{a x+1}{a x-1}-1\right)}\right)^{2} \operatorname{arccoth}(a x)^{2}}{8 a^{6}} \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{(a x-1)\left(\frac{a x+1}{a x-1}-1\right)}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{arccoth}(a x)^{2}}{8 a^{6}}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\sqrt{\frac{a x-1}{a x+1}}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}(a x+1)}{a x-1}\right) \operatorname{arccoth}(a x)^{2}}{8 a^{6}}
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccoth}(a x)^{3}}{x} \mathrm{~d} x
$$

Optimal(type 4, 138 leaves, 8 steps):

$$
\begin{aligned}
& 2 \operatorname{arccoth}(a x)^{3} \operatorname{arccoth}\left(1-\frac{2}{-a x+1}\right)+\frac{3 \operatorname{arccoth}(a x)^{2} \operatorname{polylog}\left(2,1-\frac{2}{a x+1}\right)}{2}-\frac{3 \operatorname{arccoth}(a x)^{2} \operatorname{polylog}\left(2,1-\frac{2 a x}{a x+1}\right)}{2} \\
& \quad+\frac{3 \operatorname{arccoth}(a x) \operatorname{polylog}\left(3,1-\frac{2}{a x+1}\right)}{2}-\frac{3 \operatorname{arccoth}(a x) \operatorname{polylog}\left(3,1-\frac{2 a x}{a x+1}\right)}{2}+\frac{3 \operatorname{polylog}\left(4,1-\frac{2}{a x+1}\right)}{4}-\frac{3 \operatorname{polylog}\left(4,1-\frac{2 a x}{a x+1}\right)}{4}
\end{aligned}
$$

Result(type 4, 563 leaves):
$\ln (a x) \operatorname{arccoth}(a x)^{3}+\operatorname{arccoth}(a x)^{3} \ln \left(\frac{a x+1}{a x-1}-1\right)+\frac{3 \operatorname{arccoth}(a x)^{2} \operatorname{polylog}\left(2,-\frac{a x+1}{a x-1}\right)}{2}-\frac{3 \operatorname{arccoth}(a x) \operatorname{polylog}\left(3,-\frac{a x+1}{a x-1}\right)}{2}$

$$
\begin{aligned}
& +\frac{3 \operatorname{polylog}\left(4,-\frac{a x+1}{a x-1}\right)}{4}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{2} \operatorname{arccoth}(a x)^{3}}{2} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{2} \operatorname{arccoth}(a x)^{3}}{2}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right)^{3} \operatorname{arccoth}(a x)^{3}}{2}
\end{aligned}
$$

$$
+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\frac{a x+1}{a x-1}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(1+\frac{a x+1}{a x-1}\right)}{\frac{a x+1}{a x-1}-1}\right) \operatorname{arccoth}(a x)^{3}}{2}-\operatorname{arccoth}(a x)^{3} \ln \left(1+\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)
$$

$$
-3 \operatorname{arccoth}(a x)^{2} \operatorname{polylog}\left(2,-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)+6 \operatorname{arccoth}(a x) \operatorname{polylog}\left(3,-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-6 \operatorname{polylog}\left(4,-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-\operatorname{arccoth}(a x)^{3} \ln (1
$$

$$
\left.-\frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-3 \operatorname{arccoth}(a x)^{2} \operatorname{polylog}\left(2, \frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)+6 \operatorname{arccoth}(a x) \operatorname{polylog}\left(3, \frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)-6 \operatorname{polylog}\left(4, \frac{1}{\sqrt{\frac{a x-1}{a x+1}}}\right)
$$

Problem 13: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{arccoth}(a x)}{d x^{2}+c} \mathrm{~d} x
$$

Optimal(type 4, 280 leaves, 27 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{x \sqrt{d}}{\sqrt{c}}\right) \ln \left(1-\frac{1}{a x}\right)}{2 \sqrt{c} \sqrt{d}}+\frac{\arctan \left(\frac{x \sqrt{d}}{\sqrt{c}}\right) \ln \left(1+\frac{1}{a x}\right)}{2 \sqrt{c} \sqrt{d}}+\frac{\arctan \left(\frac{x \sqrt{d}}{\sqrt{c}}\right) \ln \left(-\frac{2(-a x+1) \sqrt{c} \sqrt{d}}{(\mathrm{I} a \sqrt{c}-\sqrt{d})(\sqrt{c}-\mathrm{I} x \sqrt{d})}\right)}{2 \sqrt{c} \sqrt{d}} \\
& -\frac{\arctan \left(\frac{x \sqrt{d}}{\sqrt{c}}\right) \ln \left(\frac{2(a x+1) \sqrt{c} \sqrt{d}}{(\mathrm{I} a \sqrt{c}+\sqrt{d})(\sqrt{c}-\mathrm{I} x \sqrt{d})}\right)}{2 \sqrt{c} \sqrt{d}}-\frac{\operatorname{Ipolylog}\left(2,1+\frac{2(-a x+1) \sqrt{c} \sqrt{d}}{(\mathrm{I} a \sqrt{c}-\sqrt{d})(\sqrt{c}-\mathrm{I} x \sqrt{d})}\right)}{4 \sqrt{c} \sqrt{d}}
\end{aligned}
$$

$$
+\frac{\mathrm{I} \mathrm{polylog}\left(2,1-\frac{2(a x+1) \sqrt{c} \sqrt{d}}{(\mathrm{I} a \sqrt{c}+\sqrt{d})(\sqrt{c}-\mathrm{I} x \sqrt{d})}\right)}{4 \sqrt{c} \sqrt{d}}
$$

Result(type 7, 117 leaves):

Problem 14: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{arccoth}(a x)}{\left(d x^{2}+c\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 493 leaves, 23 steps):

$$
\frac{a}{8 c\left(c a^{2}+d\right)\left(d x^{2}+c\right)}+\frac{x \operatorname{arccoth}(a x)}{4 c\left(d x^{2}+c\right)^{2}}+\frac{3 x \operatorname{arccoth}(a x)}{8 c^{2}\left(d x^{2}+c\right)}+\frac{a\left(5 c a^{2}+3 d\right) \ln \left(-a^{2} x^{2}+1\right)}{16 c^{2}\left(c a^{2}+d\right)^{2}}-\frac{a\left(5 c a^{2}+3 d\right) \ln \left(d x^{2}+c\right)}{16 c^{2}\left(c a^{2}+d\right)^{2}}
$$

$$
\begin{aligned}
& +\frac{3 \operatorname{arccoth}(a x) \arctan \left(\frac{x \sqrt{d}}{\sqrt{c}}\right)}{8 c^{5 / 2} \sqrt{d}}-\frac{3 \mathrm{I} \ln \left(-\frac{(a x+1) \sqrt{d}}{\mathrm{I} a \sqrt{c}-\sqrt{d}}\right) \ln \left(1-\frac{\mathrm{I} x \sqrt{d}}{\sqrt{c}}\right)}{32 c^{5 / 2 \sqrt{d}}}+\frac{3 \mathrm{I} \ln \left(\frac{(-a x+1) \sqrt{d}}{\mathrm{I} a \sqrt{c}+\sqrt{d}}\right) \ln \left(1-\frac{\mathrm{I} x \sqrt{d}}{\sqrt{c}}\right)}{32 c^{5 / 2 \sqrt{d}}} \\
& -\frac{3 \mathrm{I} \ln \left(-\frac{(-a x+1) \sqrt{d}}{\mathrm{I} a \sqrt{c}-\sqrt{d}}\right) \ln \left(1+\frac{\mathrm{I} x \sqrt{d}}{\sqrt{c}}\right)}{32 c^{5 / 2 \sqrt{d}}}+\frac{3 \mathrm{I} \ln \left(\frac{(a x+1) \sqrt{d}}{\mathrm{I} a \sqrt{c}+\sqrt{d}}\right) \ln \left(1+\frac{\mathrm{I} x \sqrt{d}}{\sqrt{c}}\right)}{32 c^{5 / 2 \sqrt{d}}}+\frac{3 \mathrm{I} \operatorname{polylog}\left(2, \frac{a(\sqrt{c}-\mathrm{I} x \sqrt{d})}{a \sqrt{c}-\mathrm{I} \sqrt{d}}\right)}{32 c^{5 / 2 \sqrt{d}}} \\
& -\frac{3 \mathrm{Ipolylog}\left(2, \frac{a(\sqrt{c}-\mathrm{I} x \sqrt{d})}{a \sqrt{c}+\mathrm{I} \sqrt{d}}\right)}{32 c^{5 / 2} \sqrt{d}}+\frac{3 \mathrm{I} \operatorname{polylog}\left(2, \frac{a(\sqrt{c}+\mathrm{I} x \sqrt{d})}{a \sqrt{c}-\mathrm{I} \sqrt{d}}\right)}{32 c^{5 / 2 \sqrt{d}}}-\frac{3 \mathrm{I} \operatorname{polylog}\left(2, \frac{a(\sqrt{c}+\mathrm{I} x \sqrt{d})}{a \sqrt{c}+\mathrm{I} \sqrt{d}}\right)}{32 c^{5 / 2 \sqrt{d}}}
\end{aligned}
$$

Result(type ?, 2849 leaves): Display of huge result suppressed!
Problem 15: Unable to integrate problem.

$$
\int \frac{\operatorname{arccoth}(a x)}{\left(d x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 108 leaves, 7 steps):

$$
\frac{x \operatorname{arccoth}(a x)}{3 c\left(d x^{2}+c\right)^{3 / 2}}-\frac{\left(3 c a^{2}+2 d\right) \operatorname{arctanh}\left(\frac{a \sqrt{d x^{2}+c}}{\sqrt{c a^{2}+d}}\right)}{3 c^{2}\left(c a^{2}+d\right)^{3 / 2}}+\frac{a}{3 c\left(c a^{2}+d\right) \sqrt{d x^{2}+c}}+\frac{2 x \operatorname{arccoth}(a x)}{3 c^{2} \sqrt{d x^{2}+c}}
$$

Result (type 8, 16 leaves):

$$
\int \frac{\operatorname{arccoth}(a x)}{\left(d x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\operatorname{arccoth}(a x)}{\left(d x^{2}+c\right)^{9 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 247 leaves, 8 steps):

$$
\begin{aligned}
& \frac{a}{35 c\left(c a^{2}+d\right)\left(d x^{2}+c\right)^{5 / 2}}+\frac{a\left(11 c a^{2}+6 d\right)}{105 c^{2}\left(c a^{2}+d\right)^{2}\left(d x^{2}+c\right)^{3 / 2}}+\frac{x \operatorname{arccoth}(a x)}{7 c\left(d x^{2}+c\right)^{7 / 2}}+\frac{6 x \operatorname{arccoth}(a x)}{35 c^{2}\left(d x^{2}+c\right)^{5 / 2}}+\frac{8 x \operatorname{arccoth}(a x)}{35 c^{3}\left(d x^{2}+c\right)^{3 / 2}} \\
& -\frac{\left(35 c^{3} a^{6}+70 a^{4} c^{2} d+56 a^{2} c d^{2}+16 d^{3}\right) \operatorname{arctanh}\left(\frac{a \sqrt{d x^{2}+c}}{\sqrt{c a^{2}+d}}\right)}{35 c^{4}\left(c a^{2}+d\right)^{7 / 2}}+\frac{a\left(19 c^{2} a^{4}+22 c a^{2} d+8 d^{2}\right)}{35 c^{3}\left(c a^{2}+d\right)^{3} \sqrt{d x^{2}+c}}+\frac{16 x \operatorname{arccoth}(a x)}{35 c^{4} \sqrt{d x^{2}+c}}
\end{aligned}
$$

Result (type 8, 16 leaves):

$$
\int \frac{\operatorname{arccoth}(a x)}{\left(d x^{2}+c\right)^{9 / 2}} \mathrm{~d} x
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \operatorname{arccoth}(x)}{-x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 33 leaves, 4 steps):

$$
-\frac{\operatorname{arccoth}(x)^{2}}{2}+\operatorname{arccoth}(x) \ln \left(\frac{2}{1-x}\right)+\frac{\operatorname{polylog}\left(2, \frac{1+x}{-1+x}\right)}{2}
$$

Result(type 4, 74 leaves):
$-\frac{\operatorname{arccoth}(x) \ln (-1+x)}{2}-\frac{\operatorname{arccoth}(x) \ln (1+x)}{2}-\frac{\ln (-1+x)^{2}}{8}+\frac{\operatorname{dilog}\left(\frac{x}{2}+\frac{1}{2}\right)}{2}+\frac{\ln (-1+x) \ln \left(\frac{x}{2}+\frac{1}{2}\right)}{4}$

$$
-\frac{\left(\ln (1+x)-\ln \left(\frac{x}{2}+\frac{1}{2}\right)\right) \ln \left(-\frac{x}{2}+\frac{1}{2}\right)}{4}+\frac{\ln (1+x)^{2}}{8}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccoth}(x)}{\left(-x^{2}+1\right)^{2}} d x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
-\frac{1}{4\left(-x^{2}+1\right)}+\frac{x \operatorname{arccoth}(x)}{2\left(-x^{2}+1\right)}+\frac{\operatorname{arccoth}(x)^{2}}{4}
$$

Result (type 3, 98 leaves):

$$
\begin{aligned}
& -\frac{\operatorname{arccoth}(x)}{4(1+x)}+\frac{\operatorname{arccoth}(x) \ln (1+x)}{4}-\frac{\operatorname{arccoth}(x)}{4(-1+x)}-\frac{\operatorname{arccoth}(x) \ln (-1+x)}{4}-\frac{\ln (-1+x)^{2}}{16}+\frac{1}{8(-1+x)}+\frac{\ln (-1+x) \ln \left(\frac{x}{2}+\frac{1}{2}\right)}{8} \\
& \quad+\frac{\left(\ln (1+x)-\ln \left(\frac{x}{2}+\frac{1}{2}\right)\right) \ln \left(-\frac{x}{2}+\frac{1}{2}\right)}{8}-\frac{\ln (1+x)^{2}}{16}-\frac{1}{8(1+x)}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{arccoth}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 190 leaves, 15 steps):

$$
\begin{aligned}
\frac{x}{3 b^{2}} & -\frac{2 a(b x+a) \operatorname{arccoth}(b x+a)}{b^{3}}+\frac{(b x+a)^{2} \operatorname{arccoth}(b x+a)}{3 b^{3}}+\frac{a\left(a^{2}+3\right) \operatorname{arccoth}(b x+a)^{2}}{3 b^{3}}+\frac{\left(3 a^{2}+1\right) \operatorname{arccoth}(b x+a)^{2}}{3 b^{3}} \\
& +\frac{x^{3} \operatorname{arccoth}(b x+a)^{2}}{3}-\frac{\operatorname{arctanh}(b x+a)}{3 b^{3}}-\frac{2\left(3 a^{2}+1\right) \operatorname{arccoth}(b x+a) \ln \left(\frac{2}{-b x-a+1}\right)}{3 b^{3}}-\frac{a \ln \left(1-(b x+a)^{2}\right)}{b^{3}} \\
& -\frac{\left(3 a^{2}+1\right) \operatorname{polylog}\left(2, \frac{-b x-a-1}{-b x-a+1}\right)}{3 b^{3}}
\end{aligned}
$$

Result (type 4, 728 leaves):
$\frac{x}{3 b^{2}}+\frac{x^{3} \operatorname{arccoth}(b x+a)^{2}}{3}+\frac{\operatorname{arccoth}(b x+a) x^{2}}{3 b}-\frac{\ln (b x+a-1) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{6 b^{3}}+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a-1)}{3 b^{3}}$
$+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a+1)}{3 b^{3}}+\frac{\ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln (b x+a+1)}{6 b^{3}}-\frac{\ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{6 b^{3}}-\frac{a^{2} \ln (b x+a+1)^{2}}{4 b^{3}}$
$-\frac{a^{3} \ln (b x+a-1)^{2}}{12 b^{3}}-\frac{a \ln (b x+a+1)^{2}}{4 b^{3}}-\frac{a \ln (b x+a-1)^{2}}{4 b^{3}}+\frac{a^{2} \ln (b x+a-1)^{2}}{4 b^{3}}-\frac{a^{2} \operatorname{dilog}\left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{b^{3}}-\frac{a^{3} \ln (b x+a+1)^{2}}{12 b^{3}}$

$$
\left.\begin{array}{l}
-\frac{\ln (b x+a-1) a}{b^{3}}-\frac{\ln (b x+a+1) a}{b^{3}}-\frac{5 \operatorname{arccoth}(b x+a) a^{2}}{3 b^{3}}+\frac{a}{3 b^{3}}-\frac{\ln (b x+a+1)^{2}}{12 b^{3}}+\frac{\ln (b x+a-1)^{2}}{12 b^{3}}-\frac{\operatorname{dilog}\left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{3 b^{3}} \\
+\frac{\ln (b x+a-1)}{6 b^{3}}-\frac{\ln (b x+a+1)}{6 b^{3}}-\frac{\operatorname{arccoth}(b x+a) \ln (b x+a-1) a^{3}}{3 b^{3}}+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a-1) a^{2}}{b^{3}} \\
-\frac{\operatorname{arccoth}(b x+a) \ln (b x+a-1) a}{b^{3}}+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a+1) a^{3}}{3 b^{3}}+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a+1) a^{2}}{b^{3}} \\
+\frac{\operatorname{arccoth}(b x+a) \ln (b x+a+1) a}{b^{3}}-\frac{a^{3} \ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{6 b^{3}}+\frac{a^{3} \ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln (b x+a+1)}{6 b^{3}} \\
+\frac{a \ln (b x+a-1) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{2 b^{3}}-\frac{a^{2} \ln (b x+a-1) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{2 b^{3}}+\frac{a^{3} \ln (b x+a-1) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{6 b^{3}} \\
-\frac{a \ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{2 b^{3}}+\frac{a \ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln (b x+a+1)}{2 b^{3}} \\
+\frac{a^{2} \ln \left(-\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln \left(\frac{b x}{2}+\frac{a}{2}+\frac{1}{2}\right)}{2 b^{3}} \\
\left.+\frac{b x}{2}-\frac{a}{2}+\frac{1}{2}\right) \ln (b x+a+1) \\
2 b^{3}
\end{array}-\frac{4 \operatorname{arccoth}(b x+a) x a}{3 b^{2}}\right)
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int(f x+e)^{3}(a+b \operatorname{arccoth}(d x+c)) d x
$$

Optimal(type 3, 156 leaves, 7 steps):

$$
\begin{aligned}
& \frac{b f\left(6 d^{2} e^{2}-12 c d e f+\left(6 c^{2}+1\right) f^{2}\right) x}{4 d^{3}}+\frac{b f^{2}(-f c+d e)(d x+c)^{2}}{2 d^{4}}+\frac{b f^{3}(d x+c)^{3}}{12 d^{4}}+\frac{(f x+e)^{4}(a+b \operatorname{arccoth}(d x+c))}{4 f} \\
& +\frac{b(-f c+d e+f)^{4} \ln (-d x-c+1)}{8 d^{4} f}-\frac{b(-f c+d e-f)^{4} \ln (d x+c+1)}{8 d^{4} f}
\end{aligned}
$$

Result(type 3, 785 leaves):

$$
\begin{aligned}
& \frac{a f^{3} x^{4}}{4}+a x e^{3}+\frac{a e^{4}}{4 f}+\frac{13 b f^{3} c^{3}}{12 d^{4}}+\frac{b f^{3} c}{4 d^{4}}+\frac{b f^{3} x^{3}}{12 d}+\frac{b f^{3} \ln (d x+c-1)}{8 d^{4}}-\frac{b f^{3} \ln (d x+c+1)}{8 d^{4}}+\frac{b \ln (d x+c-1) e^{3}}{2 d}+\frac{b \ln (d x+c+1) e^{3}}{2 d} \\
& \quad+\frac{b f^{3} \operatorname{arccoth}(d x+c) x^{4}}{4}+\operatorname{arccoth}(d x+c) x b e^{3}+\frac{b \ln (d x+c-1) e^{4}}{8 f}-\frac{b \ln (d x+c+1) e^{4}}{8 f}+\frac{b \operatorname{arccoth}(d x+c) e^{4}}{4 f}+\frac{b f^{3} x}{4 d^{3}}+a f^{2} x^{3} e \\
& \quad+\frac{3 a f x^{2} e^{2}}{2}+\frac{b \ln (d x+c+1) c e^{3}}{2 d}+\frac{b f^{2} \ln (d x+c+1) e}{2 d^{3}}+\frac{3 b f^{3} \ln (d x+c-1) c^{2}}{4 d^{4}}+b f^{2} \operatorname{arccoth}(d x+c) e x^{3}+\frac{3 b f \operatorname{arccoth}(d x+c) e^{2} x^{2}}{2} \\
& +\frac{3 b f^{3} c^{2} x}{4 d^{3}}+\frac{3 b f e^{2} x}{2 d}+\frac{3 b f e^{2} c}{2 d^{2}}-\frac{5 b f^{2} e c^{2}}{2 d^{3}}-\frac{b f^{3} x^{2} c}{4 d^{2}}-\frac{b f^{3} \ln (d x+c-1) c}{2 d^{4}}-\frac{b f^{3} \ln (d x+c+1) c^{4}}{8 d^{4}}-\frac{b f^{3} \ln (d x+c+1) c^{3}}{2 d^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3 b f^{3} \ln (d x+c+1) c^{2}}{4 d^{4}}-\frac{b f^{3} \ln (d x+c+1) c}{2 d^{4}}+\frac{3 b f \ln (d x+c-1) e^{2}}{4 d^{2}}+\frac{b f^{2} \ln (d x+c-1) e}{2 d^{3}}-\frac{3 b f \ln (d x+c+1) e^{2}}{4 d^{2}} \\
& +\frac{b f^{3} \ln (d x+c-1) c^{4}}{8 d^{4}}-\frac{b f^{3} \ln (d x+c-1) c^{3}}{2 d^{4}}-\frac{b \ln (d x+c-1) c e^{3}}{2 d}+\frac{b f^{2} e x^{2}}{2 d}-\frac{3 b f \ln (d x+c+1) c e^{2}}{2 d^{2}}+\frac{3 b f^{2} \ln (d x+c+1) c e}{2 d^{3}} \\
& -\frac{b f^{2} \ln (d x+c-1) c^{3} e}{2 d^{3}}+\frac{3 b f \ln (d x+c-1) c^{2} e^{2}}{4 d^{2}}+\frac{3 b f^{2} \ln (d x+c-1) c^{2} e}{2 d^{3}}-\frac{3 b f \ln (d x+c-1) c e^{2}}{2 d^{2}}-\frac{3 b f^{2} \ln (d x+c-1) c e}{2 d^{3}} \\
& +\frac{b f^{2} \ln (d x+c+1) c^{3} e}{2 d^{3}}-\frac{3 b f \ln (d x+c+1) c^{2} e^{2}}{4 d^{2}}+\frac{3 b f^{2} \ln (d x+c+1) c^{2} e}{2 d^{3}}-\frac{2 b f^{2} c e x}{d^{2}}
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccoth}(d x+c))^{2}}{(f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 478 leaves, 24 steps):

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arccoth}(d x+c))^{2}}{f(f x+e)}+\frac{b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{-d x-c+1}\right)}{f(-f c+d e+f)}-\frac{a b d \ln (-d x-c+1)}{f(-f c+d e+f)}-\frac{b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{d x+c+1}\right)}{f(-f c+d e-f)} \\
& +\frac{2 b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)}+\frac{a b d \ln (d x+c+1)}{f(-f c+d e-f)}+\frac{2 a b d \ln (f x+e)}{f^{2}-(-f c+d e)^{2}}-\frac{2 b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{(-f c+d e+f)(d x+c+1)}\right)}{(-f c+d e+f)(d e-(1+c) f)} \\
& \quad+\frac{b^{2} d \operatorname{polylog}\left(2, \frac{-d x-c-1}{-d x-c+1}\right)}{2 f(-f c+d e+f)}+\frac{b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{2 f(-f c+d e-f)}-\frac{b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)} \\
& \quad+\frac{b^{2} d \operatorname{polylog}\left(2,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{(-f c+d e+f)(d e-(1+c) f)}
\end{aligned}
$$

Result(type 4, 1285 leaves):

$$
\begin{aligned}
& -\frac{d b^{2} \ln (d x+c+1)^{2}}{4(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} \operatorname{dilog}\left(\frac{(d x+c) f-f}{f c-d e-f}\right)}{(f c-d e-f)(f c-d e+f)}+\frac{d b^{2} \operatorname{dilog}\left(\frac{(d x+c) f+f}{f c-d e+f}\right)}{(f c-d e-f)(f c-d e+f)}+\frac{d b^{2} \ln (d x+c-1)^{2}}{4(f c-d e-f)(f c-d e+f)} \\
& \quad-\frac{d b^{2} \operatorname{dilog}\left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} \operatorname{arccoth}(d x+c)^{2}}{(d f x+d e) f}-\frac{d b^{2} c \ln (d x+c-1) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2(f c-d e-f)(f c-d e+f)} \\
& \quad+\frac{d b^{2} c \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} c \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln (d x+c+1)}{2(f c-d e-f)(f c-d e+f)}-\frac{d^{2} b^{2} e \ln (d x+c+1)^{2}}{4 f(f c-d e-f)(f c-d e+f)} \\
& -\frac{d^{2} b^{2} e \ln (d x+c-1)^{2}}{4 f(f c-d e-f)(f c-d e+f)}+\frac{d b^{2} c \ln (d x+c-1)^{2}}{4(f c-d e-f)(f c-d e+f)}+\frac{d b^{2} c \ln (d x+c+1)^{2}}{4(f c-d e-f)(f c-d e+f)}-\frac{2 d a b \ln (d x+c+1)}{f(2 f c-2 d e+2 f)}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 d a b \ln (d x+c-1)}{f(2 f c-2 d e-2 f)}-\frac{2 d a b \ln ((d x+c) f-f c+d e)}{(f c-d e-f)(f c-d e+f)}-\frac{2 d b^{2} \operatorname{arccoth}(d x+c) \ln (d x+c+1)}{f(2 f c-2 d e+2 f)}+\frac{2 d b^{2} \operatorname{arccoth}(d x+c) \ln (d x+c-1)}{f(2 f c-2 d e-2 f)} \\
& -\frac{2 d b^{2} \operatorname{arccoth}(d x+c) \ln ((d x+c) f-f c+d e)}{(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} \ln ((d x+c) f-f c+d e) \ln \left(\frac{(d x+c) f-f}{f c-d e-f}\right)}{(f c-d e-f)(f c-d e+f)} \\
& +\frac{d b^{2} \ln ((d x+c) f-f c+d e) \ln \left(\frac{(d x+c) f+f}{f c-d e+f}\right)}{(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} \ln (d x+c-1) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2(f c-d e-f)(f c-d e+f)}-\frac{d b^{2} \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2(f c-d e-f)(f c-d e+f)} \\
& +\frac{d b^{2} \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln (d x+c+1)}{2(f c-d e-f)(f c-d e+f)}-\frac{2 d a b \operatorname{arccoth}(d x+c)}{(d f x+d e) f}-\frac{d a^{2}}{(d f x+d e) f}+\frac{d^{2} b^{2} e \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln (d x+c+1)}{2 f(f c-d e-f)(f c-d e+f)} \\
& +\frac{d^{2} b^{2} e \ln (d x+c-1) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2 f(f c-d e-f)(f c-d e+f)}-\frac{d^{2} b^{2} e \ln \left(-\frac{d x}{2}-\frac{c}{2}+\frac{1}{2}\right) \ln \left(\frac{d x}{2}+\frac{c}{2}+\frac{1}{2}\right)}{2 f(f c-d e-f)(f c-d e+f)}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccoth}(d x+c))^{3}}{f x+e} \mathrm{~d} x
$$

Optimal(type 4, 296 leaves, 2 steps):

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arccoth}(d x+c))^{3} \ln \left(\frac{2}{d x+c+1}\right)}{f}+\frac{(a+b \operatorname{arccoth}(d x+c))^{3} \ln \left(\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{f} \\
& +\frac{3 b(a+b \operatorname{arccoth}(d x+c))^{2} \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{2 f}-\frac{3 b(a+b \operatorname{arccoth}(d x+c))^{2} \operatorname{polylog}\left(2,1-\frac{2}{(-f c+d e+f)(d x+c+1)}\right)}{2 f} \\
& \quad+\frac{3 b^{2}(a+b \operatorname{arccoth}(d x+c)) \operatorname{polylog}\left(3,1-\frac{2 d(f x+e)}{d x+c+1}\right)}{2 f}-\frac{3 b^{2}(a+b \operatorname{arccoth}(d x+c)) \operatorname{polylog}\left(3,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{2 f} \\
& \quad+\frac{3 b^{3} \operatorname{polylog}\left(4,1-\frac{2}{d x+c+1}\right)}{4 f}-\frac{3 b^{3} \operatorname{polylog}\left(4,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{4 f}
\end{aligned}
$$

Result(type ?, 3795 leaves): Display of huge result suppressed!
Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccoth}(d x+c))^{3}}{(f x+e)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 1067 leaves, 33 steps):
$-\frac{(a+b \operatorname{arccoth}(d x+c))^{3}}{f(f x+e)}+\frac{3 a b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{-d x-c+1}\right)}{f(-f c+d e+f)}+\frac{3 b^{3} d \operatorname{arccoth}(d x+c)^{2} \ln \left(\frac{2}{-d x-c+1}\right)}{2 f(-f c+d e+f)}-\frac{3 a^{2} b d \ln (-d x-c+1)}{2 f(-f c+d e+f)}$

$$
\begin{aligned}
& -\frac{3 a b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{d x+c+1}\right)}{f(-f c+d e-f)}+\frac{6 a b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)}-\frac{3 b^{3} d \operatorname{arccoth}(d x+c)^{2} \ln \left(\frac{2}{d x+c+1}\right)}{2 f(-f c+d e-f)} \\
& +\frac{3 b^{3} d \operatorname{arccoth}(d x+c)^{2} \ln \left(\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)}+\frac{3 a^{2} b d \ln (d x+c+1)}{2 f(-f c+d e-f)}+\frac{3 a^{2} b d \ln (f x+e)}{f^{2}-(-f c+d e)^{2}} \\
& -\frac{6 a b^{2} d \operatorname{arccoth}(d x+c) \ln \left(\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{-} \quad 3 b^{3} d \operatorname{arccoth}(d x+c)^{2} \ln \left(\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right) \\
& (-f c+d e+f)(d e-(1+c) f) \quad(-f c+d e+f)(d e-(1+c) f) \\
& +\frac{3 a b^{2} d \operatorname{polylog}\left(2, \frac{-d x-c-1}{-d x-c+1}\right)}{2 f(-f c+d e+f)}+\frac{3 b^{3} d \operatorname{arccoth}(d x+c) \operatorname{polylog}\left(2,1-\frac{2}{-d x-c+1}\right)}{2 f(-f c+d e+f)}+\frac{3 a b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{2 f(-f c+d e-f)} \\
& -\frac{3 a b^{2} d \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)}+\frac{3 b^{3} d \operatorname{arccoth}(d x+c) \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{2 f(-f c+d e-f)}-\frac{3 b^{3} d \operatorname{arccoth}(d x+c) \operatorname{polylog}\left(2,1-\frac{2}{d x+c+1}\right)}{(-f c+d e+f)(d e-(1+c) f)} \\
& +\frac{3 a b^{2} d \operatorname{poly} \log \left(2,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{(-f c+d e+f)(d e-(1+c) f)}+\frac{3 b^{3} d \operatorname{arccoth}(d x+c) \operatorname{polylog}\left(2,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{(-f c+d e+f)(d e-(1+c) f)} \\
& -\frac{3 b^{3} d \text { polylog }\left(3,1-\frac{2}{-d x-c+1}\right)}{4 f(-f c+d e+f)}+\frac{3 b^{3} d \operatorname{polylog}\left(3,1-\frac{2}{d x+c+1}\right)}{4 f(-f c+d e-f)}-\frac{3 b^{3} d \operatorname{poly} \log \left(3,1-\frac{2}{d x+c+1}\right)}{2(-f c+d e+f)(d e-(1+c) f)} \\
& +\frac{3 b^{3} d \operatorname{polylog}\left(3,1-\frac{2 d(f x+e)}{(-f c+d e+f)(d x+c+1)}\right)}{2(-f c+d e+f)(d e-(1+c) f)}
\end{aligned}
$$

Result(type ?, 5130 leaves): Display of huge result suppressed!
Problem 34: Unable to integrate problem.

$$
\int(f x+e)^{m}(a+b \operatorname{arccoth}(d x+c)) \mathrm{d} x
$$

Optimal(type 5, 162 leaves, 6 steps):

$$
\begin{gathered}
\frac{(f x+e)^{1+m}(a+b \operatorname{arccoth}(d x+c))}{f(1+m)}+\frac{b d(f x+e)^{2+m} \text { hypergeom }\left([1,2+m],[3+m], \frac{d(f x+e)}{-f c+d e-f}\right)}{2 f(d e-(1+c) f)(1+m)(2+m)} \\
-\frac{b d(f x+e)^{2+m} \operatorname{hypergeom}\left([1,2+m],[3+m], \frac{d(f x+e)}{-f c+d e+f}\right)}{2 f(-f c+d e+f)(1+m)(2+m)}
\end{gathered}
$$

Result(type 8, 20 leaves):

$$
\int(f x+e)^{m}(a+b \operatorname{arccoth}(d x+c)) \mathrm{d} x
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+b \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{2}}{-c^{2} x^{2}+1} \mathrm{~d} x
$$

Optimal(type 4, 258 leaves, 7 steps):

Result(type 4, 695 leaves):

$$
-\frac{a^{2} \ln (c x-1)}{2 c}+\frac{a^{2} \ln (c x+1)}{2 c}-\frac{b^{2} \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1+\frac{1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}-1}\right)}{c}-\frac{b^{2} \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \operatorname{polylog}\left(2,-\frac{1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}-1}\right)}{c}
$$

$$
+\frac{b^{2} \operatorname{polylog}\left(3,-\frac{1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}{\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}-1}\right)}{2 c}+\frac{b^{2} \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)^{2} \ln \left(1-\frac{1}{\sqrt{\frac{\sqrt{-c x+1}}{\sqrt{c x+1}-1}}}\right)}{c}
$$

$$
\begin{aligned}
& \left.-\frac{2 \operatorname{arccoth}\left(1-\frac{2}{1-\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}}\right)}{c} \text { (} a+b \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right)^{2} \quad b\left(a+b \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right) \operatorname{polylog}\left(2,1-\frac{2}{\left.1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)}\right. \\
& +\frac{b\left(a+b \operatorname{arccoth}\left(\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)\right) \operatorname{polylog}\left(2,1-\frac{2 \sqrt{-c x+1}}{\left(1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \sqrt{c x+1}}\right)}{2 c}-\frac{b^{2} \operatorname{polylog}\left(3,1-\frac{2}{\left.1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right)}\right.}{2 c} \\
& +\frac{b^{2} \text { polylog }\left(3,1-\frac{2 \sqrt{-c x+1}}{\left(1+\frac{\sqrt{-c x+1}}{\sqrt{c x+1}}\right) \sqrt{c x+1}}\right)}{2 c}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.
$\int \operatorname{arccoth}(\tanh (b x+a)) \mathrm{d} x$
Optimal(type 3, 14 leaves, 2 steps):

$$
\frac{\operatorname{arccoth}(\tanh (b x+a))^{2}}{2 b}
$$

Result (type 3, 31 leaves):

$$
\operatorname{arctanh}(\tanh (b x+a)) \operatorname{arccoth}(\tanh (b x+a))-\frac{\operatorname{arctanh}(\tanh (b x+a))^{2}}{2}
$$

Problem 41: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{2}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 39 leaves, 3 steps):

$$
2 b^{2} x-\frac{\operatorname{arccoth}(\tanh (b x+a))^{2}}{x}-2 b(b x-\operatorname{arccoth}(\tanh (b x+a))) \ln (x)
$$

Result(type 3, 1098 leaves):

$$
\begin{aligned}
& 2 b^{2} x+\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\mathrm{I}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)^{2}-\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{2 x} \\
& -\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{2 x}+\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{b x+a}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)}{2 x} \\
& -\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)^{2}}{x}+\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)^{3}}{2 x}+\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{2 x} \\
& -\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)^{3}}{2}-\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{2}+\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{2} \\
& -\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\mathrm{Ie}^{b x+a}\right)^{2} \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)}{2}+\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{2}+\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}}{x} \\
& -\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}+\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}-\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}}{x}-2 \ln (x) x b^{2}+2 \ln \left(\mathrm{e}^{b x+a}\right) \ln (x) b \\
& -\mathrm{I} \pi \ln (x) b+\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right)}{x}-\frac{\ln \left(\mathrm{e}^{b x+a}\right)^{2}}{x}-\frac{\mathrm{I} \pi \ln (x) b \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)}{2} \\
& +\frac{\mathrm{I} \pi \ln \left(\mathrm{e}^{b x+a}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)}{2 x}+\frac{1}{16 x}\left(\pi ^ { 2 } \left(2 \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2}\right.\right. \\
& -2 \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}-\operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)+\operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} \\
& -\operatorname{csgn}\left(\mathrm{I}^{b x+a}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)+2 \operatorname{csgn}\left(\mathrm{I}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)^{2}-\operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)^{3}+\operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} \\
& \left.\left.-\operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3}-2\right)^{2}\right)
\end{aligned}
$$

Optimal(type 3, 53 leaves, 4 steps):

$$
-\frac{b^{3} x^{8}}{280}+\frac{b^{2} x^{7} \operatorname{arccoth}(\tanh (b x+a))}{35}-\frac{b x^{6} \operatorname{arccoth}(\tanh (b x+a))^{2}}{10}+\frac{x^{5} \operatorname{arccoth}(\tanh (b x+a))^{3}}{5}
$$

Result(type ?, 18110 leaves): Display of huge result suppressed!
Problem 43: Result more than twice size of optimal antiderivative.
$\int x^{3} \operatorname{arccoth}(\tanh (b x+a))^{3} \mathrm{~d} x$
Optimal(type 3, 53 leaves, 4 steps):

$$
-\frac{b^{3} x^{7}}{140}+\frac{b^{2} x^{6} \operatorname{arccoth}(\tanh (b x+a))}{20}-\frac{3 b x^{5} \operatorname{arccoth}(\tanh (b x+a))^{2}}{20}+\frac{x^{4} \operatorname{arccoth}(\tanh (b x+a))^{3}}{4}
$$

Result(type ?, 18110 leaves): Display of huge result suppressed!
Problem 44: Humongous result has more than 20000 leaves.
$\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{3}}{x} \mathrm{~d} x$
Optimal(type 3, 73 leaves, 4 steps):
$b x(b x-\operatorname{arccoth}(\tanh (b x+a)))^{2}-\frac{(b x-\operatorname{arccoth}(\tanh (b x+a))) \operatorname{arccoth}(\tanh (b x+a))^{2}}{2}+\frac{\operatorname{arccoth}(\tanh (b x+a))^{3}}{3}-(b x-\operatorname{arccoth}(\tanh (b x$

$$
+a))^{3} \ln (x)
$$

Result(type ?, 21847 leaves): Display of huge result suppressed!
Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{3}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 51 leaves, 4 steps):

$$
-\frac{b^{2} \operatorname{arccoth}(\tanh (b x+a))}{x}-\frac{b \operatorname{arccoth}(\tanh (b x+a))^{2}}{2 x^{2}}-\frac{\operatorname{arccoth}(\tanh (b x+a))^{3}}{3 x^{3}}+b^{3} \ln (x)
$$

Result(type ?, 17236 leaves): Display of huge result suppressed!
Problem 46: Result more than twice size of optimal antiderivative.
$\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{3}}{x^{5}} \mathrm{~d} x$
Optimal(type 3, 29 leaves, 1 step):

$$
\frac{\operatorname{arccoth}(\tanh (b x+a))^{4}}{4 x^{4}(b x-\operatorname{arccoth}(\tanh (b x+a)))}
$$

Result(type ?, 17234 leaves): Display of huge result suppressed!

Problem 47: Attempted integration timed out after 120 seconds.

Optimal(type 3, 90 leaves, 6 steps):

$$
\frac{b}{x(b x-\operatorname{arccoth}(\tanh (b x+a)))^{2}}+\frac{1}{2 x^{2}(b x-\operatorname{arccoth}(\tanh (b x+a)))}-\frac{b^{2} \ln (x)}{(b x-\operatorname{arccoth}(\tanh (b x+a)))^{3}}+\frac{b^{2} \ln (\operatorname{arccoth}(\tanh (b x+a)))}{(b x-\operatorname{arccoth}(\tanh (b x+a)))^{3}}
$$

Result(type 1, 1 leaves):???
Problem 48: Humongous result has more than 20000 leaves.

Optimal(type 3, 96 leaves, 6 steps):
$\frac{4 x^{3}}{3 b^{2}}+\frac{2 x^{2}(b x-\operatorname{arccoth}(\tanh (b x+a)))}{b^{3}}+\frac{4 x(b x-\operatorname{arccoth}(\tanh (b x+a)))^{2}}{b^{4}}-\frac{x^{4}}{b \operatorname{arccoth}(\tanh (b x+a))}$

$$
+\frac{4(b x-\operatorname{arccoth}(\tanh (b x+a)))^{3} \ln (\operatorname{arccoth}(\tanh (b x+a)))}{b^{5}}
$$

Result(type ?, 131084 leaves): Display of huge result suppressed!
Problem 49: Humongous result has more than 20000 leaves.
$\int x \operatorname{arccoth}(\tanh (b x+a))^{n} d x$
Optimal(type 3, 48 leaves, 3 steps):

$$
\frac{x \operatorname{arccoth}(\tanh (b x+a))^{1+n}}{b(1+n)}-\frac{\operatorname{arccoth}(\tanh (b x+a))^{2+n}}{b^{2}(1+n)(2+n)}
$$

Result(type ?, 71610 leaves): Display of huge result suppressed!
Problem 50: Unable to integrate problem.

$$
\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{n}}{x} \mathrm{~d} x
$$

Optimal(type 5, 66 leaves, 1 step):

$$
\underline{\operatorname{arccoth}(\tanh (b x+a))^{1+n} \text { hypergeom }\left([1,1+n],[2+n],-\frac{\operatorname{arccoth}(\tanh (b x+a))}{b x-\operatorname{arccoth}(\tanh (b x+a))}\right)}
$$

$$
(1+n)(b x-\operatorname{arccoth}(\tanh (b x+a)))
$$

Result(type 8, 15 leaves):

$$
\int \frac{\operatorname{arccoth}(\tanh (b x+a))^{n}}{x} \mathrm{~d} x
$$

Problem 52: Unable to integrate problem.

$\int x \operatorname{arccoth}(\sinh (x)) d x$

Optimal(type 1, 1 leaves, 8 steps):
0
Result(type 8, 7 leaves):
$\int x \operatorname{arccoth}(\sinh (x)) d x$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccoth}(c+d \tanh (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 211 leaves, 9 steps):
$\frac{x^{2} \operatorname{arccoth}(c+d \tanh (b x+a))}{2}+\frac{x^{2} \ln \left(1+\frac{(1-c-d) \mathrm{e}^{2 b x+2 a}}{1-c+d}\right)}{4}-\frac{x^{2} \ln \left(1+\frac{(1+c+d) \mathrm{e}^{2 b x+2 a}}{1+c-d}\right)}{4}+\frac{x \operatorname{polylog}\left(2,-\frac{(1-c-d) \mathrm{e}^{2 b x+2 a}}{1-c+d}\right)}{4 b}$

$$
-\frac{x \operatorname{poly} \log \left(2,-\frac{(1+c+d) \mathrm{e}^{2 b x+2 a}}{1+c-d}\right)}{4 b}-\frac{\operatorname{polylog}\left(3,-\frac{(1-c-d) \mathrm{e}^{2 b x+2 a}}{1-c+d}\right)}{8 b^{2}}+\frac{\operatorname{polylog}\left(3,-\frac{(1+c+d) \mathrm{e}^{2 b x+2 a}}{1+c-d}\right)}{8 b^{2}}
$$

Result(type ?, 4989 leaves): Display of huge result suppressed!
Problem 55: Result more than twice size of optimal antiderivative.
$\int x^{3} \operatorname{arccoth}(1+d+d \tanh (b x+a)) \mathrm{d} x$
Optimal(type 4, 136 leaves, 8 steps):
$\frac{b x^{5}}{20}+\frac{x^{4} \operatorname{arccoth}(1+d+d \tanh (b x+a))}{4}-\frac{x^{4} \ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right)}{8}-\frac{x^{3} \operatorname{poly} \log \left(2,-(1+d) \mathrm{e}^{2 b x+2 a}\right)}{4 b}+\frac{3 x^{2} \operatorname{poly} \log \left(3,-(1+d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{2}}$
$-\frac{3 x \operatorname{poly} \log \left(4,-(1+d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}}+\frac{3 \text { polylog}\left(5,-(1+d) \mathrm{e}^{2 b x+2 a}\right)}{16 b^{4}}$
Result(type 4, 1735 leaves):
$\frac{b x^{5}}{20}+\frac{a^{4} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{a^{4} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{a^{3} \operatorname{dilog}\left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{a^{3} \operatorname{dilog}\left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}$
$-\frac{3 \ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right) a^{4}}{8 b^{4}(1+d)}-\frac{d \ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right) x^{4}}{8(1+d)}+\frac{x^{4} \ln \left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{8}-\frac{x^{4} \ln \left(\mathrm{e}^{b x+a}\right)}{4}-\frac{\ln (d) x^{4}}{8}$
$+\frac{d a^{3} \operatorname{dilog}\left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{d a^{3} \operatorname{dilog}\left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}-\frac{\ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right) x a^{3}}{2 b^{3}(1+d)}-\frac{3 d a^{4} \ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{4}(1+d)}$
$+\frac{d a^{4} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{d a^{4} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right)}{2 b^{4}(1+d)}+\frac{a^{3} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right) x}{2 b^{3}(1+d)}-\frac{\ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right) x^{4}}{8(1+d)}$

$$
\begin{aligned}
& \mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}+1}\right) x^{4} \\
& 16 \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right) x^{4}}{16}+\frac{d a^{3} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right) x}{2 b^{3}(1+d)}+\frac{d a^{3} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{-d-1}\right) x}{2 b^{3}(1+d)} \\
& -\frac{d a^{3} \ln \left(1+(1+d) \mathrm{e}^{2 b x+2 a}\right) x}{2 b^{3}(1+d)}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3} x^{4}}{16}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)^{3} x^{4}}{16}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3} x^{4}}{16} \\
& -\underline{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{3} x^{4}} \\
& \frac{3 d \operatorname{poly} \log \left(4,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x}{8 b^{3}(1+d)}-\frac{d a^{3} \operatorname{poly} \log \left(2,(-d-1) \mathrm{e}^{2 b x+2 a}\right)}{4 b^{4}(1+d)} \\
& -\frac{d a^{4} \ln \left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{8 b^{4}(1+d)}-\frac{d \operatorname{poly} \log \left(2,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x^{3}}{4 b(1+d)}+\frac{3 d \operatorname{poly} \log \left(3,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x^{2}}{8 b^{2}(1+d)}+\frac{a^{3} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{-d-1}\right) x}{2 b^{3}(1+d)} \\
& \left.-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} x^{4}}{16}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)^{2} x^{4}}{8}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}}{\mathrm{e}^{2 b x} b+2 a}+2 a\right.}{16}\right)^{2} x^{4}(1) \\
& -\underline{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} x^{4}}+\underline{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} x^{4}} \\
& 16 \\
& +16 \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{Ie}^{b x+a}\right)^{2} \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right) x^{4}}{16}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} x^{4}}{16} \\
& -\frac{\operatorname{poly} \log \left(2,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x^{3}}{4 b(1+d)}-\frac{\operatorname{poly} \log \left(2,(-d-1) \mathrm{e}^{2 b x+2 a}\right) a^{3}}{4 b^{4}(1+d)}+\frac{3 \operatorname{polylog}\left(3,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x^{2}}{8 b^{2}(1+d)}-\frac{a^{4} \ln \left(\mathrm{e}^{2 b x+2 a} d+\mathrm{e}^{2 b x+2 a}+1\right)}{8 b^{4}(1+d)} \\
& +\frac{3 \operatorname{poly} \log \left(5,(-d-1) \mathrm{e}^{2 b x+2 a}\right)}{16 b^{4}(1+d)}+\frac{3 d \operatorname{poly} \log \left(5,(-d-1) \mathrm{e}^{2 b x+2 a}\right)}{16 b^{4}(1+d)}-\frac{3 \operatorname{polylog}\left(4,(-d-1) \mathrm{e}^{2 b x+2 a}\right) x}{8 b^{3}(1+d)} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right)^{2} x^{4}}{16}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right) \operatorname{csgn}(\mathrm{I} d) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}+1}\right) x^{4}}{16}
\end{aligned}
$$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(c+d \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 138 leaves, 7 steps):
$x \operatorname{arccoth}(c+d \operatorname{coth}(b x+a))+\frac{x \ln \left(1-\frac{(1-c-d) \mathrm{e}^{2 b x+2 a}}{1-c+d}\right)}{2}-\frac{x \ln \left(1-\frac{(1+c+d) \mathrm{e}^{2 b x+2 a}}{1+c-d}\right)}{2}+\frac{\operatorname{polylog}\left(2, \frac{(1-c-d) \mathrm{e}^{2 b x+2 a}}{1-c+d}\right)}{4 b}$

$$
-\frac{\operatorname{poly} \log \left(2, \frac{(1+c+d) \mathrm{e}^{2 b x+2 a}}{1+c-d}\right)}{4 b}
$$

Result(type 4, 305 leaves):
$\frac{\operatorname{arccoth}(c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)+d)}{2 b}-\frac{\operatorname{arccoth}(c+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)-d)}{2 b}-\frac{\operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+c-1}{c+d-1}\right.}{4 b}$

Problem 59: Result more than twice size of optimal antiderivative.
$\int \operatorname{arccoth}(1+d+d \operatorname{coth}(b x+a)) \mathrm{d} x$
Optimal(type 4, 61 leaves, 5 steps):

$$
\frac{b x^{2}}{2}+x \operatorname{arccoth}(1+d+d \operatorname{coth}(b x+a))-\frac{x \ln \left(1-(1+d) \mathrm{e}^{2 b x+2 a}\right)}{2}-\frac{\operatorname{polylog}\left(2,(1+d) \mathrm{e}^{2 b x+2 a}\right)}{4 b}
$$

Result(type 4, 246 leaves):
$\frac{\operatorname{arccoth}(1+d+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)+d)}{2 b}-\frac{\operatorname{arccoth}(1+d+d \operatorname{coth}(b x+a)) \ln (d \operatorname{coth}(b x+a)-d)}{2 b}-\frac{\operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+d}{2 d}\right)}{4 b}$

$$
\begin{aligned}
& -\frac{\ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{d \operatorname{coth}(b x+a)+d}{2 d}\right)}{4 b}+\frac{\operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)+d+2}{2 d+2}\right)}{4 b}+\frac{\ln (d \operatorname{coth}(b x+a)-d) \ln \left(\frac{d \operatorname{coth}(b x+a)+d+2}{2 d+2}\right)}{4 b} \\
& +\frac{\ln (d \operatorname{coth}(b x+a)+d)^{2}}{8 b}-\frac{\operatorname{dilog}\left(\frac{d \operatorname{coth}(b x+a)}{2}+\frac{d}{2}+1\right)}{4 b}-\frac{\ln (d \operatorname{coth}(b x+a)+d) \ln \left(\frac{d \operatorname{coth}(b x+a)}{2}+\frac{d}{2}+1\right)}{4 b}
\end{aligned}
$$

Problem 60: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 121 leaves, 7 steps):
$\frac{b x^{4}}{12}+\frac{x^{3} \operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a))}{3}-\frac{x^{3} \ln \left(1-(1-d) \mathrm{e}^{2 b x+2 a}\right)}{6}-\frac{x^{2} \operatorname{poly} \log \left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{4 b}+\frac{x \operatorname{polylog}\left(3,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{4 b^{2}}$
$-\frac{\operatorname{poly} \log \left(4,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}}$
Result(type 4, 1778 leaves):
$\frac{b x^{4}}{12}+\frac{\operatorname{poly} \log \left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right) x^{2}}{4 b(d-1)}-\frac{\operatorname{poly} \log \left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right) a^{2}}{4 b^{3}(d-1)}-\frac{\operatorname{poly} \log \left(3,(1-d) \mathrm{e}^{2 b x+2 a}\right) x}{4 b^{2}(d-1)}-\frac{a^{3} \ln \left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{6 b^{3}(d-1)}$
$-\frac{d \operatorname{poly} \log \left(4,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}(d-1)}-\frac{\ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) x a^{2}}{2 b^{2}(d-1)}+\frac{a^{2} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right) x}{2 b^{2}(d-1)}+\frac{a^{2} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right) x}{2 b^{2}(d-1)}$
$-\frac{d a^{3} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}-\frac{d a^{3} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}-\frac{d a^{2} \operatorname{dilog}\left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}-\frac{d a^{2} \operatorname{dilog}\left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}$
$+\frac{\operatorname{poly} \log \left(4,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{8 b^{3}(d-1)}+\frac{\mathrm{I} \pi x^{3} \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right)^{3}}{12}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{6}-\frac{d \ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) x^{3}}{6(d-1)}$
$-\frac{\ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) a^{3}}{3 b^{3}(d-1)}+\frac{a^{3} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}+\frac{a^{3} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}+\frac{a^{2} \operatorname{dilog}\left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}$
$+\frac{a^{2} \operatorname{dilog}\left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right)}{2 b^{3}(d-1)}+\frac{d a^{3} \ln \left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{6 b^{3}(d-1)}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3} x^{3}}{12}+\frac{\mathrm{I} \pi x^{3} \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{b x+a}\right)^{2} \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{2 b x+2 a}\right)}{12}$
$-\frac{\mathrm{I} \pi x^{3} \operatorname{csgn}\left(\mathrm{Ie}^{b x+a}\right) \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right)^{2}}{6}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12}$
$-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{Ie}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{Ie}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12}-\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12}$
$+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12}$
$+\frac{x^{3} \ln \left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{6}-\frac{d \operatorname{poly} \log \left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right) x^{2}}{4 b(d-1)}+\frac{d \operatorname{polylog}\left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right) a^{2}}{4 b^{3}(d-1)}+\frac{d \operatorname{polylog}\left(3,(1-d) \mathrm{e}^{2 b x+2 a}\right) x}{4 b^{2}(d-1)}$

$$
\begin{aligned}
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{6}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3} x^{3}}{12}+\frac{d \ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) a^{3}}{3 b^{3}(d-1)}-\frac{x^{3} \ln \left(\mathrm{e}^{b x+a}\right)}{3}-\frac{\ln (d) x^{3}}{6} \\
& +\frac{\ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) x^{3}}{6(d-1)}+\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{3} x^{3}}{12}-\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right)^{2} x^{3}}{12} \\
& +\frac{d \ln \left(1+(d-1) \mathrm{e}^{2 b x+2 a}\right) x a^{2}}{2 b^{2}(d-1)}-\frac{d a^{2} \ln \left(1+\mathrm{e}^{b x+a} \sqrt{1-d}\right) x}{2 b^{2}(d-1)}-\frac{d a^{2} \ln \left(1-\mathrm{e}^{b x+a} \sqrt{1-d}\right) x}{2 b^{2}(d-1)} \\
& +\frac{\mathrm{I} \pi \operatorname{csgn}\left(\mathrm{I}^{2 b x+2 a}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right) x^{3}}{12}+\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I} d \mathrm{e}^{2 b x+2 a}}{\mathrm{e}^{2 b x+2 a}-1}\right) x^{3}}{12} \\
& -\frac{\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{2 b x+2 a}-1}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 b x+2 a} d-\mathrm{e}^{2 b x+2 a}+1\right)}{\mathrm{e}^{2 b x+2 a}-1}\right) x^{3}}{}
\end{aligned}
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a)) \mathrm{d} x
$$

Optimal(type 4, 68 leaves, 5 steps):

$$
\frac{b x^{2}}{2}+x \operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a))-\frac{x \ln \left(1-(1-d) \mathrm{e}^{2 b x+2 a}\right)}{2}-\frac{\operatorname{polylog}\left(2,(1-d) \mathrm{e}^{2 b x+2 a}\right)}{4 b}
$$

Result(type 4, 270 leaves):
$\frac{\operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a)) \ln (-d-d \operatorname{coth}(b x+a))}{2 b}-\frac{\operatorname{arccoth}(1-d-d \operatorname{coth}(b x+a)) \ln (-d \operatorname{coth}(b x+a)+d)}{2 b}+\frac{\ln (-d-d \operatorname{coth}(b x+a))^{2}}{8 b}$

$$
-\frac{\operatorname{dilog}\left(-\frac{d \operatorname{coth}(b x+a)}{2}-\frac{d}{2}+1\right)}{4 b}-\frac{\ln (-d-d \operatorname{coth}(b x+a)) \ln \left(-\frac{d \operatorname{coth}(b x+a)}{2}-\frac{d}{2}+1\right)}{4 b}+\frac{\operatorname{dilog}\left(\frac{-d \operatorname{coth}(b x+a)-d+2}{2-2 d}\right)}{4 b}
$$

$$
+\frac{\ln (-d \operatorname{coth}(b x+a)+d) \ln \left(\frac{-d \operatorname{coth}(b x+a)-d+2}{2-2 d}\right)}{4 b}-\frac{\operatorname{dilog}\left(-\frac{-d-d \operatorname{coth}(b x+a)}{2 d}\right)}{4 b}
$$

$$
-\frac{\ln (-d \operatorname{coth}(b x+a)+d) \ln \left(-\frac{-d-d \operatorname{coth}(b x+a)}{2 d}\right)}{4 b}
$$

Problem 63: Result more than twice size of optimal antiderivative.

$$
\int(f x+e)^{2} \operatorname{arccoth}(\tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 193 leaves, 10 steps):
$\frac{(f x+e)^{3} \operatorname{arccoth}(\tan (b x+a))}{3 f}+\frac{\mathrm{I}(f x+e)^{3} \arctan \left(\mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{3 f}-\frac{\mathrm{I}(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b}+\frac{\mathrm{I}(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b}$
$+\frac{f(f x+e) \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b^{2}}-\frac{f(f x+e) \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b^{2}}+\frac{\mathrm{I} f^{2} \operatorname{poly} \log \left(4,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8 b^{3}}-\frac{\mathrm{I} f^{2} \operatorname{poly} \log \left(4, \mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8 b^{3}}$
Result(type ?, 5542 leaves): Display of huge result suppressed!
Problem 64: Result more than twice size of optimal antiderivative.
$\int x \operatorname{arccoth}(c+d \tan (b x+a)) \mathrm{d} x$
Optimal(type 4, 249 leaves, 9 steps):
$\frac{x^{2} \operatorname{arccoth}(c+d \tan (b x+a))}{2}+\frac{x^{2} \ln \left(1+\frac{(1-c+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1-c-\mathrm{I} d}\right)}{4}-\frac{x^{2} \ln \left(1+\frac{(1+c-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+c+\mathrm{I} d}\right)}{4}$

$$
-\frac{\mathrm{I} x \operatorname{polylog}\left(2,-\frac{(1-c+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1-c-\mathrm{I} d}\right)}{4 b}+\frac{\mathrm{I} x \operatorname{polylog}\left(2,-\frac{(1+c-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+c+\mathrm{I} d}\right)}{4 b}+\frac{\operatorname{polylog}\left(3,-\frac{(1-c+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1-c-\mathrm{I} d}\right)}{8 b^{2}}
$$

$$
-\frac{\operatorname{polylog}\left(3,-\frac{(1+c-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+c+\mathrm{I} d}\right)}{8 b^{2}}
$$

Result(type ?, 6445 leaves): Display of huge result suppressed!
Problem 65: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(c+d \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 164 leaves, 7 steps):
$x \operatorname{arccoth}(c+d \tan (b x+a))+\frac{x \ln \left(1+\frac{(1-c+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1-c-\mathrm{I} d}\right)}{2}-\frac{x \ln \left(1+\frac{(1+c-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+c+\mathrm{I} d}\right)}{2}-\frac{\mathrm{I} p o l y \log \left(2,-\frac{(1-c+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1-c-\mathrm{I} d}\right)}{4 b}$

$$
+\frac{\mathrm{I} \operatorname{polylog}\left(2,-\frac{(1+c-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}}{1+c+\mathrm{I} d}\right)}{4 b}
$$

Result(type 4, 611 leaves):
$\frac{\arctan (\tan (b x+a)) \operatorname{arccoth}(c+d \tan (b x+a))}{b}+\frac{\arctan \left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right) \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c-1\right)}{2 b}$
$-\frac{\arctan \left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right) \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c+1\right)}{2 b}$

$$
\begin{aligned}
& +\frac{\mathrm{I} \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c-1\right) \ln \left(\frac{\mathrm{I} d-d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{4 b}\right)}{\mathrm{I} d+c-1} \\
& -\frac{\mathrm{I} \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c-1\right) \ln \left(\frac{\mathrm{I} d+d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{1-c+\mathrm{I} d}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} d-d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{\mathrm{I} d+c-1}\right)}{4 b} \\
& -\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} d+d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{1-c+\mathrm{I} d}\right)}{4 b}-\frac{\mathrm{I} \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c+1\right) \ln \left(\frac{\mathrm{I} d-d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{1+c+\mathrm{I} d}\right)}{4 b} \\
& +\frac{\mathrm{I} \ln \left(d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)+c+1\right) \ln \left(\frac{\mathrm{I} d+d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{\mathrm{I} d-c-1}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} d-d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{1+c+\mathrm{I} d}\right)}{4 b} \\
& +\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\mathrm{I} d+d\left(\frac{c+d \tan (b x+a)}{d}-\frac{c}{d}\right)}{\mathrm{I} d-c-1}\right)}{4 b}
\end{aligned}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 108 leaves, 6 steps):
$\frac{\mathrm{I} b x^{3}}{6}+\frac{x^{2} \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a))}{2}-\frac{x^{2} \ln \left(1+(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4}+\frac{\mathrm{I} x \operatorname{poly} \log \left(2,-(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}$
$-\frac{\operatorname{poly} \log \left(3,-(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{2}}$
Result(type ?, 2248 leaves): Display of huge result suppressed!
Problem 67: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 76 leaves, 5 steps):

$$
\frac{\mathrm{I} b x^{2}}{2}+x \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a))-\frac{x \ln \left(1+(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{2}+\frac{\mathrm{I} \operatorname{poly} \log \left(2,-(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}
$$

Result(type 4, 291 leaves):
$-\frac{\mathrm{I} \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a)) \ln (-\mathrm{I} d+d \tan (b x+a))}{2 b}+\frac{\mathrm{I} \operatorname{arccoth}(1-\mathrm{I} d+d \tan (b x+a)) \ln (\mathrm{I} d+d \tan (b x+a))}{2 b}-\frac{\mathrm{I} \ln (-\mathrm{I} d+d \tan (b x+a))^{2}}{8 b}$

$$
\begin{aligned}
& +\frac{\mathrm{I} \operatorname{dilog}\left(1-\frac{\mathrm{I} d}{2}+\frac{d \tan (b x+a)}{2}\right)}{4 b}+\frac{\mathrm{I} \ln (-\mathrm{I} d+d \tan (b x+a)) \ln \left(1-\frac{\mathrm{I} d}{2}+\frac{d \tan (b x+a)}{2}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{2-\mathrm{I} d+d \tan (b x+a)}{-2 \mathrm{I} d+2}\right)}{4 b} \\
& -\frac{\mathrm{I} \ln (\mathrm{I} d+d \tan (b x+a)) \ln \left(\frac{2-\mathrm{I} d+d \tan (b x+a)}{-2 \mathrm{I} d+2}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d+d \tan (b x+a))}{d}\right)}{4 b} \\
& +\frac{\mathrm{I} \ln (\mathrm{I} d+d \tan (b x+a)) \ln \left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d+d \tan (b x+a))}{d}\right)}{4 b}
\end{aligned}
$$

Problem 68: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(1+\mathrm{I} d-d \tan (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 77 leaves, 5 steps):

$$
\frac{\mathrm{I} b x^{2}}{2}+x \operatorname{arccoth}(1+\mathrm{I} d-d \tan (b x+a))-\frac{x \ln \left(1+(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{2}+\frac{\mathrm{I} \operatorname{polylog}\left(2,-(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}
$$

Result(type 4, 296 leaves):
$-\frac{\mathrm{I} \operatorname{arccoth}(1+\mathrm{I} d-d \tan (b x+a)) \ln (\mathrm{I} d-d \tan (b x+a))}{2 b}+\frac{\mathrm{I} \operatorname{arccoth}(1+\mathrm{I} d-d \tan (b x+a)) \ln (\mathrm{I} d+d \tan (b x+a))}{2 b}-\frac{\mathrm{I} \ln (\mathrm{I} d-d \tan (b x+a))^{2}}{8 b}$

$$
+\frac{\mathrm{I} \operatorname{dilog}\left(1+\frac{\mathrm{I} d}{2}-\frac{d \tan (b x+a)}{2}\right)}{4 b}+\frac{\mathrm{I} \ln (\mathrm{I} d-d \tan (b x+a)) \ln \left(1+\frac{\mathrm{I} d}{2}-\frac{d \tan (b x+a)}{2}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{-2-\mathrm{I} d+d \tan (b x+a)}{-2 \mathrm{I} d-2}\right)}{4 b}
$$

$$
-\frac{\mathrm{I} \ln (\mathrm{I} d+d \tan (b x+a)) \ln \left(\frac{-2-\mathrm{I} d+d \tan (b x+a)}{-2 \mathrm{I} d-2}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d+d \tan (b x+a))}{d}\right)}{4 b}
$$

$$
+\frac{\mathrm{I} \ln (\mathrm{I} d+d \tan (b x+a)) \ln \left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d+d \tan (b x+a))}{d}\right)}{4 b}
$$

Problem 69: Result more than twice size of optimal antiderivative.

$$
\int(f x+e)^{2} \operatorname{arccoth}(\cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 193 leaves, 10 steps):
$\frac{(f x+e)^{3} \operatorname{arccoth}(\cot (b x+a))}{3 f}+\frac{\mathrm{I}(f x+e)^{3} \arctan \left(\mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{3 f}-\frac{\mathrm{I}(f x+e)^{2} \operatorname{polylog}\left(2,-\mathrm{I}{ }^{2 \mathrm{I}(b x+a)}\right)}{4 b}+\frac{\mathrm{I}(f x+e)^{2} \operatorname{polylog}\left(2, \mathrm{Ie} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b}$

$$
+\frac{f(f x+e) \operatorname{poly} \log \left(3,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b^{2}}-\frac{f(f x+e) \operatorname{poly} \log \left(3, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{4 b^{2}}+\frac{\mathrm{I} f^{2} \operatorname{poly} \log \left(4,-\mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8 b^{3}}-\frac{\mathrm{I} f^{2} \operatorname{poly} \log \left(4, \mathrm{I} \mathrm{e}^{2 \mathrm{I}(b x+a)}\right)}{8 b^{3}}
$$

Result(type ?, 5542 leaves): Display of huge result suppressed!
Problem 70: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{arccoth}(1+\mathrm{I} d+d \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 136 leaves, 7 steps):
$\frac{\mathrm{I} b x^{4}}{12}+\frac{x^{3} \operatorname{arccoth}(1+\mathrm{I} d+d \cot (b x+a))}{3}-\frac{x^{3} \ln \left(1-(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{6}+\frac{\mathrm{I} x^{2} \operatorname{polylog}\left(2,(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}$

$$
-\frac{x \operatorname{poly} \log \left(3,(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b^{2}}-\frac{\mathrm{I} p o l y \log \left(4,(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{3}}
$$

Result(type ?, 2448 leaves): Display of huge result suppressed!
Problem 71: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccoth}(1+\mathrm{I} d+d \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 107 leaves, 6 steps):
$\frac{\mathrm{I} b x^{3}}{6}+\frac{x^{2} \operatorname{arccoth}(1+\mathrm{I} d+d \cot (b x+a))}{2}-\frac{x^{2} \ln \left(1-(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4}+\frac{\mathrm{I} x \operatorname{poly} \log \left(2,(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}-\frac{\operatorname{poly} \log \left(3,(1+\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{8 b^{2}}$
Result(type ?, 2350 leaves): Display of huge result suppressed!
Problem 72: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{arccoth}(1-\mathrm{I} d-d \cot (b x+a)) \mathrm{d} x
$$

Optimal(type 4, 77 leaves, 5 steps):

$$
\frac{\mathrm{I} b x^{2}}{2}+x \operatorname{arccoth}(1-\mathrm{I} d-d \cot (b x+a))-\frac{x \ln \left(1-(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{2}+\frac{\mathrm{I} \operatorname{polylog}\left(2,(1-\mathrm{I} d) \mathrm{e}^{2 \mathrm{I} a+2 \mathrm{I} b x}\right)}{4 b}
$$

Result(type 4, 303 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{I} \operatorname{arccoth}(1-\mathrm{I} d-d \cot (b x+a)) \ln (-\mathrm{I} d-d \cot (b x+a))}{2 b}+\frac{\mathrm{I} \operatorname{arccoth}(1-\mathrm{I} d-d \cot (b x+a)) \ln (\mathrm{I} d-d \cot (b x+a))}{2 b}-\frac{\mathrm{I} \ln (-\mathrm{I} d-d \cot (b x+a))^{2}}{8 b} \\
& +\frac{\mathrm{I} \operatorname{dilog}\left(1-\frac{\mathrm{I} d}{2}-\frac{d \cot (b x+a)}{2}\right)}{4 b}+\frac{\mathrm{I} \ln (-\mathrm{I} d-d \cot (b x+a)) \ln \left(1-\frac{\mathrm{I} d}{2}-\frac{d \cot (b x+a)}{2}\right)}{4 b}-\frac{\mathrm{I} \operatorname{dilog}\left(\frac{2-\mathrm{I} d-d \cot (b x+a)}{-2 \mathrm{I} d+2}\right)}{4 b} \\
& \quad-\frac{\mathrm{I} \ln (\mathrm{I} d-d \cot (b x+a)) \ln \left(\frac{2-\mathrm{I} d-d \cot (b x+a)}{-2 \mathrm{I} d+2}\right)}{4 b}+\frac{\mathrm{I} \operatorname{dilog}\left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d-d \cot (b x+a))}{d}\right)}{4 b}
\end{aligned}
$$

$+\frac{\mathrm{I} \ln (\mathrm{I} d-d \cot (b x+a)) \ln \left(\frac{\frac{\mathrm{I}}{2}(-\mathrm{I} d-d \cot (b x+a))}{d}\right)}{4 b}$

Problem 73: Result more than twice size of optimal antiderivative.

$$
\int x^{5}(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right) \mathrm{d} x
$$

Optimal(type 3, 265 leaves, 18 steps):

$$
\begin{aligned}
& \frac{b(6 d-11 e) x}{36 c^{5}}-\frac{23 b e x}{45 c^{5}}+\frac{b(6 d-5 e) x^{3}}{108 c^{3}}-\frac{8 b e x^{3}}{135 c^{3}}+\frac{b(3 d-e) x^{5}}{90 c}-\frac{b e x^{5}}{75 c}-\frac{e x^{2}(a+b \operatorname{arccoth}(c x))}{6 c^{4}}-\frac{e x^{4}(a+b \operatorname{arccoth}(c x))}{12 c^{2}} \\
& -\frac{e x^{6}(a+b \operatorname{arccoth}(c x))}{18}-\frac{b(6 d-11 e) \operatorname{arctanh}(c x)}{36 c^{6}}+\frac{23 b e \operatorname{arctanh}(c x)}{45 c^{6}}+\frac{b e x \ln \left(-x^{2} c^{2}+1\right)}{6 c^{5}}+\frac{b e x^{3} \ln \left(-x^{2} c^{2}+1\right)}{18 c^{3}}+\frac{b e x^{5} \ln \left(-x^{2} c^{2}+1\right)}{30 c} \\
& -\frac{e(a+b \operatorname{arccoth}(c x)) \ln \left(-x^{2} c^{2}+1\right)}{6 c^{6}}+\frac{x^{6}(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right)}{6}
\end{aligned}
$$

Result(type ?, 4033 leaves): Display of huge result suppressed!
Problem 74: Maple result simpler than optimal antiderivative, IF it can be verified!

$$
\int \frac{(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right)}{x^{6}} \mathrm{~d} x
$$

Optimal(type 4, 234 leaves, 24 steps):

$$
\begin{aligned}
& \frac{7 b c^{3} e}{60 x^{2}}+\frac{2 c^{2} e(a+b \operatorname{arccoth}(c x))}{15 x^{3}}+\frac{2 c^{4} e(a+b \operatorname{arccoth}(c x))}{5 x}-\frac{c^{5} e(a+b \operatorname{arccoth}(c x))^{2}}{5 b}-\frac{5 b c^{5} e \ln (x)}{6}+\frac{19 b c^{5} e \ln \left(-x^{2} c^{2}+1\right)}{60} \\
& -\frac{b c\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right)}{20 x^{4}}-\frac{b c^{3}\left(-x^{2} c^{2}+1\right)\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right)}{10 x^{2}}-\frac{(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right)}{5 x^{5}} \\
& +\frac{b c^{5}\left(d+e \ln \left(-x^{2} c^{2}+1\right)\right) \ln \left(1-\frac{1}{-x^{2} c^{2}+1}\right)}{10}-\frac{b c^{5} e \operatorname{poly} \log \left(2, \frac{1}{-x^{2} c^{2}+1}\right)}{10}
\end{aligned}
$$

Result(type 3, 79 leaves):

$$
-\frac{a e \ln \left(-x^{2} c^{2}+1\right)}{5 x^{5}}+\frac{a\left(3 c^{5} e \ln (-c x+1) x^{5}-3 c^{5} e \ln (-c x-1) x^{5}+6 c^{4} e x^{4}+2 e c^{2} x^{2}-3 d\right)}{15 x^{5}}
$$

Problem 76: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 442 leaves, 38 steps):
$-\frac{(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x}+\frac{b c \ln \left(-\frac{g x^{2}}{f}\right)\left(d+e \ln \left(g x^{2}+f\right)\right)}{2}-\frac{b c \ln \left(\frac{g\left(-x^{2} c^{2}+1\right)}{f c^{2}+g}\right)\left(d+e \ln \left(g x^{2}+f\right)\right)}{2}$

$$
\begin{aligned}
& -\frac{b c e \text { polylog }\left(2, \frac{c^{2}\left(g x^{2}+f\right)}{f c^{2}+g}\right)}{2}+\frac{b c e \text { polylog }\left(2,1+\frac{g x^{2}}{f}\right)}{2}+\frac{2 a e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \sqrt{g}}{\sqrt{f}}-\frac{b e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \ln \left(1-\frac{1}{c x}\right) \sqrt{g}}{\sqrt{f}} \\
& +\frac{b e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \ln \left(1+\frac{1}{c x}\right) \sqrt{g}}{\sqrt{f}}+\frac{b e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \ln \left(-\frac{2(-c x+1) \sqrt{f} \sqrt{g}}{(\mathrm{I} c \sqrt{f}-\sqrt{g})(\sqrt{f}-\mathrm{I} x \sqrt{g})}\right) \sqrt{g}}{\sqrt{f}} \\
& -\frac{b e \arctan \left(\frac{x \sqrt{g}}{\sqrt{f}}\right) \ln \left(\frac{2(c x+1) \sqrt{f} \sqrt{g}}{(\mathrm{I} c \sqrt{f}+\sqrt{g})(\sqrt{f}-\mathrm{I} x \sqrt{g})}\right) \sqrt{g}}{\sqrt{f}}-\frac{\mathrm{I} b e \mathrm{polylog}\left(2,1+\frac{2(-c x+1) \sqrt{f} \sqrt{g}}{(\mathrm{I} c \sqrt{f}-\sqrt{g})(\sqrt{f}-\mathrm{I} x \sqrt{g})}\right) \sqrt{g}}{2 \sqrt{f}} \\
& +\frac{\mathrm{I} b e \mathrm{polylog}\left(2,1-\frac{2(c x+1) \sqrt{f} \sqrt{g}}{(\mathrm{I} c \sqrt{f}+\sqrt{g})(\sqrt{f}-\mathrm{I} x \sqrt{g})}\right) \sqrt{g}}{2 \sqrt{f}}
\end{aligned}
$$

Result(type 8, 26 leaves):

$$
\int \frac{(a+b \operatorname{arccoth}(c x))\left(d+e \ln \left(g x^{2}+f\right)\right)}{x^{2}} \mathrm{~d} x
$$

Problem 79: Result more than twice size of optimal antiderivative.

$$
\int x^{-1+n} \operatorname{arccoth}\left(a+b x^{n}\right) \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 4 steps):

$$
\frac{\left(a+b x^{n}\right) \operatorname{arccoth}\left(a+b x^{n}\right)}{b n}+\frac{\ln \left(1-\left(a+b x^{n}\right)^{2}\right)}{2 b n}
$$

Result(type 3, 117 leaves):

$$
\frac{x^{n} \ln \left(a+b x^{n}+1\right)}{2 n}-\frac{x^{n} \ln \left(a+b x^{n}-1\right)}{2 n}+\frac{\ln \left(x^{n}+\frac{1+a}{b}\right) a}{2 b n}-\frac{\ln \left(x^{n}+\frac{a-1}{b}\right) a}{2 b n}+\frac{\ln \left(x^{n}+\frac{1+a}{b}\right)}{2 b n}+\frac{\ln \left(x^{n}+\frac{a-1}{b}\right)}{2 b n}
$$

Test results for the 242 problems in "7.4.2 Exponentials of inverse hyperbolic cotangent functions.txt" Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 3, 94 leaves, 8 steps):

$$
\frac{3 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{8 a^{4}}+\frac{2 x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3 a^{3}}+\frac{3 x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{8 a^{2}}+\frac{x^{3} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3 a}+\frac{x^{4} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{4}
$$

Result(type 3, 192 leaves):
$-\frac{1}{24 \sqrt{\frac{a x-1}{a x+1}} \sqrt{(a x-1)(a x+1)} a^{4} \sqrt{a^{2}}}\left((a x-1)\left(-6 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}-15 x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}-8((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}}\right.\right.$

$$
\left.\left.+15 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a-24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a-24 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}\right)\right)
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{2 a^{2}}+\frac{x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a}+\frac{x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 151 leaves):

$$
(a x-1)\left(-x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+\ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a-2 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a-2 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}\right)
$$

$$
2 \sqrt{\frac{a x-1}{a x+1}} \sqrt{(a x-1)(a x+1)} a^{2} \sqrt{a^{2}}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{\frac{a x-1}{a x+1}} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 32 leaves, 3 steps):

$$
-\frac{a^{2} \operatorname{arccsc}(a x)}{2}+\frac{a\left(2 a+\frac{1}{x}\right) \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 256 leaves):

$$
\begin{aligned}
& -\frac{1}{2 \sqrt{\frac{a x-1}{a x+1}} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}}\left((a x - 1) \left(-2 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}+2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}\right.\right. \\
& -2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+2 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}+a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}-2 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+\left(a^{2} x^{2}\right. \\
& \left.\left.-1)^{3 / 2} \sqrt{a^{2}}\right)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 100 leaves, 14 steps):

$$
\frac{11 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{2 a^{3}}-\frac{4 \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a^{2}\left(a-\frac{1}{x}\right)}+\frac{14 x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3 a^{2}}+\frac{3 x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2 a}+\frac{x^{3} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3}
$$

Result(type 3, 470 leaves):

$$
\begin{aligned}
& -\frac{1}{6 a^{3} \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}(a x+1)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\left(-9 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}-2 \sqrt{a^{2}}((a x-1)(a x+1))^{3} / 2 x^{2} a^{2}\right.} \\
& +9 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}-42 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+18 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}+4 \sqrt{a^{2}}((a x-1)(a x \\
& +1))^{3 / 2} x a-42 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-18 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x a^{2}+84 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2} \\
& -9 x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+10((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}}+84 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+9 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a
\end{aligned}
$$

$\left.-42 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a-42 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}\right)$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 80 leaves, 12 steps):

$$
\frac{9 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{2 a^{2}}-\frac{4 \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a\left(a-\frac{1}{x}\right)}+\frac{3 x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a}+\frac{x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 420 leaves):

$$
\begin{aligned}
& -\frac{1}{2 a^{2} \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}(a x+1)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}\left(-a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}\right. \\
& -10 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+2 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}-10 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-2 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x a^{2} \\
& \\
& +20 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+4((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}}+20 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a \\
& \\
& \left.+\ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a-10 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a-10 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}\right)
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 79 leaves, 9 steps):

$$
-\frac{a^{5}\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}}{\left(a-\frac{1}{x}\right)^{3}}-\frac{3 a^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}}{2\left(a-\frac{1}{x}\right)}+\frac{9 a^{2} \operatorname{arccsc}(a x)}{2}-\frac{9 a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 640 leaves):

$$
\begin{aligned}
& \frac{1}{2 \sqrt{a^{2}} x^{2} \sqrt{(a x-1)(a x+1)}(a x+1)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}\left(-6 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{5} a^{5}+9 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{4} a^{4}\right. \\
& +6 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-6 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}+6 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{3} a^{3}+21 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{4} a^{4} \\
& -6 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}-18 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{3} a^{3}-12 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{3} a^{4} \\
& +12 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-11 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{2} a^{2}-24 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}-4 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2} \\
& +12 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}+9 a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}+6 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2} \\
& -6 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+4 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}+9 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}-6 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2} \\
& \left.+\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right)
\end{aligned}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int x \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 3, 54 leaves, 6 steps):

$$
\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{2 a^{2}}-\frac{x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a}+\frac{x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 151 leaves):

$$
\begin{aligned}
& -\frac{1}{2 \sqrt{(a x-1)(a x+1)} a^{2} \sqrt{a^{2}}}\left(\sqrt { \frac { a x - 1 } { a x + 1 } } (a x + 1) \left(-x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+\ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a\right.\right. \\
& \left.\left.-2 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a+2 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}\right)\right)
\end{aligned}
$$

$$
\int \frac{\sqrt{\frac{a x-1}{a x+1}}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 3 steps):

$$
\frac{a^{2} \operatorname{arccsc}(a x)}{2}+\frac{a\left(2 a-\frac{1}{x}\right) \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 256 leaves):

$$
\begin{aligned}
& \frac{1}{2 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}}\left(\sqrt { \frac { a x - 1 } { a x + 1 } } (a x + 1) \left(2 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}-2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}\right.\right. \\
& \quad+2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}-2 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}+a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}-2 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+\left(a^{2} x^{2}\right. \\
& \left.\left.-1)^{3 / 2} \sqrt{a^{2}}\right)\right)
\end{aligned}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{\frac{a x-1}{a x+1}}}{x^{5}} d x
$$

Optimal(type 3, 74 leaves, 5 steps):

$$
\frac{3 a^{4} \operatorname{arccsc}(a x)}{8}+\frac{a^{3}\left(16 a-\frac{9}{x}\right) \sqrt{1-\frac{1}{a^{2} x^{2}}}}{24}-\frac{a \sqrt{1-\frac{1}{a^{2} x^{2}}}}{4 x^{3}}+\frac{a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3 x^{2}}
$$

Result(type 3, 307 leaves):

$$
\begin{aligned}
& \frac{1}{24 \sqrt{(a x-1)(a x+1)} x^{4} \sqrt{a^{2}}}\left(\sqrt { \frac { a x - 1 } { a x + 1 } } (a x + 1) \left(24 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{5} a^{5}+9 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{4} a^{4}\right.\right. \\
& -24 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{4} a^{5}+24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-24 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{3} a^{3}+9 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{4} a^{4} \\
& \left.\left.-24 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}+15 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{2} a^{2}-8 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}+6\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right)\right)
\end{aligned}
$$

Problem 18: Result more than twice size of optimal antiderivative.

Optimal(type 3, 75 leaves, 9 steps):

$$
-\frac{a^{5}\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}}{\left(a+\frac{1}{x}\right)^{3}}-\frac{3 a^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}}{2\left(a+\frac{1}{x}\right)}-\frac{9 a^{2} \operatorname{arccsc}(a x)}{2}-\frac{9 a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 640 leaves):
$-\frac{1}{2 \sqrt{a^{2}} x^{2}(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(6 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{5} a^{5}+9 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{4} a^{4}-6 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{4} a^{5}\right.\right.$ $+6 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-6 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{3} a^{3}+21 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{4} a^{4}-6 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}$
$+18 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{3} a^{3}-12 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{3} a^{4}+12 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-11 \sqrt{a^{2}}\left(a^{2} x^{2}\right.$
$-1)^{3 / 2} x^{2} a^{2}+24 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}-4 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2}-12 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}$
$+9 a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}-6 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}+6 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}-4 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}$ $\left.\left.+9 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}-6 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)$

Problem 19: Unable to integrate problem.

$$
\int \frac{x^{4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 211 leaves, 11 steps):
$\frac{611\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4} x}{1920 a^{4}}+\frac{269\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4} x^{2}}{960 a^{3}}+\frac{11\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4} x^{3}}{48 a^{2}}$

$$
+\frac{9\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4} x^{4}}{40 a}+\frac{\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4} x^{5}}{5}+\frac{31 \arctan \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)}{128 a^{5}}+\frac{31 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)}{128 a^{5}}
$$

Result(type 8, 116 leaves):

$$
\frac{\left(384 x^{4} a^{4}+432 a^{3} x^{3}+440 a^{2} x^{2}+538 a x+611\right)(a x-1)}{1920 a^{5}\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}+\frac{\left(\int \frac{31}{256 a^{4}\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}(a x+1)}
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4} x} \mathrm{~d} x
$$

Optimal(type 3, 242 leaves, 17 steps):

$$
\begin{aligned}
2 \arctan & \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)+2 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)+\frac{\ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{2} \\
& \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2} \\
& -\frac{\arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}+\arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}}{(1)}
\end{aligned}
$$

Result(type 8, 21 leaves):

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4} x} \mathrm{~d} x
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4} x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 219 leaves, 13 steps):

$$
\begin{aligned}
& \left.\left.a\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4}+\frac{\left.\left.a \arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right) a \arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right)}{2}+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}\right) a \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left.\left(1+\frac{1}{a x}\right)^{1 / 4}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}\right. \\
& \quad a \ln \left(1-\frac{(1+1}{4}\right.
\end{aligned}
$$

Result(type 8, 86 leaves):

$$
\frac{a x-1}{x\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}+\frac{\left(\int \frac{a}{2 x\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}(a x+1)}
$$

Problem 22: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 258 leaves, 14 steps):

$$
\begin{aligned}
& \left.\frac{a^{2}\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4}}{4}+\frac{a^{2}\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{5 / 4}}{2}+\frac{a^{2} \arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}}{8}\right) \\
& \left.\quad a^{2} \arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right) a^{2} \ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\left.\sqrt{1+\frac{1}{a x}}\right) \sqrt{2}}\right. \\
& +\frac{16}{\sqrt{(1+4}}
\end{aligned}
$$

$$
-\frac{a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{16}
$$

Result(type 8, 95 leaves):

$$
\frac{(a x-1)(3 a x+2)}{4 x^{2}\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}+\frac{\left(\int \frac{a^{2}}{8 x\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}(a x+1)}
$$

Problem 23: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 149 leaves, 9 steps):

$$
\begin{aligned}
& \frac{23\left(1-\frac{1}{a x}\right)^{1 / 4}\left(1+\frac{1}{a x}\right)^{3 / 4} x}{24 a^{2}}+\frac{7\left(1-\frac{1}{a x}\right)^{1 / 4}\left(1+\frac{1}{a x}\right)^{3 / 4} x^{2}}{12 a}+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4}\left(1+\frac{1}{a x}\right)^{3 / 4} x^{3}}{3}-\frac{17 \arctan \left(\frac{\left.\left(1+\frac{1}{a x}\right)^{1 / 4}\left(1-\frac{1}{a x}\right)^{1 / 4}\right)}{8 a^{3}}\right.}{17 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)} \\
& \quad+\frac{8 a^{3}}{}
\end{aligned}
$$

Result(type 8, 100 leaves):

$$
\frac{\left(8 a^{2} x^{2}+14 a x+23\right)(a x-1)}{24 a^{3}\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}+\frac{\left(\int \frac{17}{16 a^{2}\left((a x-1)^{3}(a x+1)\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)^{3}(a x+1)\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}(a x+1)}
$$

Problem 24: Unable to integrate problem.

$$
\int \frac{x}{\left(\frac{a x-1}{a x+1}\right)^{5 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 146 leaves, 8 steps):

Result(type 8, 107 leaves):

$$
\frac{(2 a x+11)(a x-1)}{4 a^{2}\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}+\frac{\left(\int \frac{-25 a x-7}{8 a^{2}\left(\frac{1}{a}-x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}(a x+1)}
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{5 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 114 leaves, 7 steps):

$$
-\frac{10\left(1+\frac{1}{a x}\right)^{1 / 4}}{a\left(1-\frac{1}{a x}\right)^{1 / 4}}+\frac{\left(1+\frac{1}{a x}\right)^{5 / 4} x}{\left(1-\frac{1}{a x}\right)^{1 / 4}}+\frac{5 \arctan \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)}{a}+\frac{5 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)}{a}
$$

Result(type 8, 100 leaves):

$$
\frac{a x-1}{a\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}+\frac{\left(\int \frac{-5 a x-3}{2 a\left(\frac{1}{a}-x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}(a x+1)}
$$

[^0]$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}{x} \mathrm{~d} x
$$

Optimal(type 3, 244 leaves, 17 steps):

$$
\begin{aligned}
& -2 \arctan \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)+2 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)+\frac{\ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{2} \\
& \left.\quad-\frac{\ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{2}-\arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}-\arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right)
\end{aligned}
$$

Result(type 8, 21 leaves):

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}{x} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 220 leaves, 13 steps):

$$
\begin{aligned}
& -a\left(1-\frac{1}{a x}\right)^{1 / 4}\left(1+\frac{1}{a x}\right)^{3 / 4}+\frac{\left.a \arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right)}{2}+\frac{a \arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}}{2} \\
& -\frac{a \ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{4}+\frac{a \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{4}
\end{aligned}
$$

Result(type 8, 87 leaves):

$$
-\frac{(a x+1)\left(\frac{a x-1}{a x+1}\right)^{1 / 4}}{x}+\frac{\left(\int \frac{a}{2 x\left((a x-1)^{3}(a x+1)\right)^{1 / 4}} \mathrm{~d} x\right)\left(\frac{a x-1}{a x+1}\right)^{1 / 4}\left((a x-1)^{3}(a x+1)\right)^{1 / 4}}{a x-1}
$$

Problem 28: Unable to integrate problem.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{x} \mathrm{~d} x
$$

Optimal(type 3, 244 leaves, 17 steps):
$2 \arctan \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)+2 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}\right)-\frac{\ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{2}$

$$
+\frac{\ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{2}-\arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}-\arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}
$$

Result(type 8, 21 leaves):

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{x} \mathrm{~d} x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 220 leaves, 13 steps):

$$
\begin{aligned}
& -a\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4}+\frac{\left.3 a \arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right)}{2}+\frac{3 a \arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}}{2} \\
& +\frac{3 a \ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{4}-\frac{3 a \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2}}{4}
\end{aligned}
$$

Result(type 8, 87 leaves):

$$
-\frac{(a x+1)\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{x}+\frac{\left(\int \frac{3 a}{2 x\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 4}\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{a x-1}
$$

Problem 30: Unable to integrate problem.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 258 leaves, 14 steps):

$$
\begin{aligned}
& \frac{3 a^{2}\left(1-\frac{1}{a x}\right)^{3 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4}}{4}+\frac{\left.a^{2}\left(1-\frac{1}{a x}\right)^{7 / 4}\left(1+\frac{1}{a x}\right)^{1 / 4}-\frac{9 a^{2} \arctan \left(-1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}}{2}\right)}{} \begin{array}{l}
\left.9 a^{2} \arctan \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}\right) \sqrt{2}\right) 9 a^{2} \ln \left(1-\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}\right) \sqrt{2} \\
\\
\\
\left.\quad 9 a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4} \sqrt{2}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\sqrt{1-\frac{1}{a x}}}{16}\right) \sqrt{1+\frac{1}{a x}}\right) \\
+\frac{\sqrt{16}}{16}
\end{array} \\
&
\end{aligned}
$$

Result(type 8, 95 leaves):

$$
\frac{(a x+1)(5 a x-2)\left(\frac{a x-1}{a x+1}\right)^{3 / 4}}{4 x^{2}}+\frac{\left(\int-\frac{9 a^{2}}{8 x\left((a x-1)(a x+1)^{3}\right)^{1 / 4}} \mathrm{~d} x\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 4}\left((a x-1)(a x+1)^{3}\right)^{1 / 4}}{a x-1}
$$

Problem 31: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{-1+x}{1+x}\right)^{1 / 6}} \mathrm{~d} x
$$

Optimal(type 3, 223 leaves, 16 steps):

$$
\begin{aligned}
& \frac{11\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6} x}{27}+\frac{7\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6} x^{2}}{18}+\frac{\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6} x^{3}}{3}+\frac{19 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{x}\right)^{1 / 6}}{\left.\left(\frac{-1+x}{x}\right)^{1 / 6}\right)^{2}}\right.}{81} \\
& -\frac{19 \ln \left(1+\frac{\left(1+\frac{1}{x}\right)^{1 / 3}}{\left(\frac{-1+x}{x}\right)^{1 / 3}}-\frac{\left(1+\frac{1}{x}\right)^{1 / 6}}{\left(\frac{-1+x}{x}\right)^{1 / 6}}\right)}{324}+\frac{19 \ln \left(1+\frac{\left(1+\frac{1}{x}\right)^{1 / 3}}{\left(\frac{-1+x}{x}\right)^{1 / 3}}+\frac{\left(1+\frac{1}{x}\right)^{1 / 6}}{\left(\frac{-1+x}{x}\right)^{1 / 6}}\right)}{324} \\
& -\frac{19 \arctan \left(\frac{\left(1-\frac{2\left(1+\frac{1}{x}\right)^{1 / 6}}{\left(\frac{-1+x}{x}\right)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{162}+\frac{19 \arctan \left(\frac{\left(1+\frac{2\left(1+\frac{1}{x}\right)^{1 / 6}}{\left(\frac{-1+x}{x}\right)^{1 / 6}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{162}
\end{aligned}
$$

Result(type 8, 70 leaves):

$$
\frac{\left(18 x^{2}+21 x+22\right)(-1+x)}{54\left(\frac{-1+x}{1+x}\right)^{1 / 6}}+\frac{\left(\int \frac{19}{162\left((-1+x)(1+x)^{5}\right)^{1 / 6}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{5}\right)^{1 / 6}}{\left(\frac{-1+x}{1+x}\right)^{1 / 6}(1+x)}
$$

Problem 32: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{-1+x}{1+x}\right)^{1 / 6} x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 181 leaves, 14 steps):

$$
\begin{aligned}
& \left.\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}+\frac{2 \arctan \left(\frac{\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right)}{3}+\frac{\arctan \left(\frac{2\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}-\sqrt{3}\right)}{3}+\frac{\arctan \left(\frac{2\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}+\sqrt{3}\right)}{3}\right) \\
& \left.\quad \ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}-\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right) \sqrt{3}\right) \ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}+\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right) \sqrt{3} \\
& \quad+\frac{(\sqrt{(1 / 6})}{6}
\end{aligned}
$$

Result(type 8, 65 leaves):

$$
\frac{-1+x}{x\left(\frac{-1+x}{1+x}\right)^{1 / 6}}+\frac{\left(\int \frac{1}{3 x\left((-1+x)(1+x)^{5}\right)^{1 / 6}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{5}\right)^{1 / 6}}{\left(\frac{-1+x}{1+x}\right)^{1 / 6}(1+x)}
$$

Problem 33: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{-1+x}{1+x}\right)^{1 / 6} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 200 leaves, 15 steps):

$$
\begin{aligned}
& \frac{\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}}{6}+\frac{\left(1+\frac{1}{x}\right)^{7 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}}{2}+\frac{\arctan \left(\frac{\left(\frac{x}{x}\right)}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right)}{9}+\frac{\arctan \left(\frac{2\left(\frac{-1}{x}\right)}{\left(1+\frac{1}{x}\right)^{1 / 6}-\sqrt{3}}\right)}{18} \\
& +\frac{\arctan \left(\frac{2\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}+\sqrt{3}\right)}{18}+\frac{\ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}-\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right) \sqrt{3}}{36} \\
& -\frac{\ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}+\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right) \sqrt{3}}{36}
\end{aligned}
$$

Result(type 8, 71 leaves):

$$
\frac{(-1+x)(3+4 x)}{6 x^{2}\left(\frac{-1+x}{1+x}\right)^{1 / 6}}+\frac{\left(\int \frac{1}{18 x\left((-1+x)(1+x)^{5}\right)^{1 / 6}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{5}\right)^{1 / 6}}{\left(\frac{-1+x}{1+x}\right)^{1 / 6}(1+x)}
$$

Problem 34: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{-1+x}{1+x}\right)^{1 / 6} x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 221 leaves, 16 steps):

$$
\begin{aligned}
& \frac{19\left(1+\frac{1}{x}\right)^{1 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}}{54}+\frac{\left(1+\frac{1}{x}\right)^{7 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}}{18}+\frac{\left(1+\frac{1}{x}\right)^{7 / 6}\left(\frac{-1+x}{x}\right)^{5 / 6}}{3 x}+\frac{19 \arctan \left(\frac{\left(\frac{1}{x}\right)}{\left.\left(1+\frac{1}{x}\right)^{1 / 6}\right)}\right.}{19 \arctan \left(\frac{2\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}-\sqrt{3}\right)} 19 \arctan \left(\frac{2\left(\frac{-1+x}{x}\right)^{1 / 6}}{\left(1+\frac{1}{x}\right)^{1 / 6}}+\sqrt{3}\right) \\
& \\
& +\frac{162 \ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}-\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left(1+\frac{1}{x}\right)^{1 / 6}}\right) \sqrt{3}}{19 \ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}+\frac{\left(\frac{-1+x}{x}\right)^{1 / 6} \sqrt{3}}{\left.\left(1+\frac{1}{x}\right)^{1 / 6}\right)} \sqrt{3}\right.} \\
& -
\end{aligned}
$$

Result(type 8, 76 leaves):

$$
\frac{(-1+x)\left(22 x^{2}+21 x+18\right)}{54 x^{3}\left(\frac{-1+x}{1+x}\right)^{1 / 6}}+\frac{\left(\int \frac{19}{162 x\left((-1+x)(1+x)^{5}\right)^{1 / 6}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{5}\right)^{1 / 6}}{\left(\frac{-1+x}{1+x}\right)^{1 / 6}(1+x)}
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 121 leaves, 6 steps):

$$
\frac{14\left(1+\frac{1}{x}\right)^{1 / 3}\left(\frac{-1+x}{x}\right)^{2 / 3} x}{27}+\frac{4\left(1+\frac{1}{x}\right)^{1 / 3}\left(\frac{-1+x}{x}\right)^{2 / 3} x^{2}}{9}+\frac{\left(1+\frac{1}{x}\right)^{1 / 3}\left(\frac{-1+x}{x}\right)^{2 / 3} x^{3}}{3}-\frac{11 \ln \left(\left(1+\frac{1}{x}\right)^{1 / 3}-\left(\frac{-1+x}{x}\right)^{1 / 3}\right)}{27}
$$

$$
-\frac{11 \ln (x)}{81}-\frac{22 \arctan \left(\frac{\sqrt{3}}{3}+\frac{2\left(\frac{-1+x}{x}\right)^{1 / 3} \sqrt{3}}{3\left(1+\frac{1}{x}\right)^{1 / 3}}\right) \sqrt{3}}{81}
$$

Result(type 8, 70 leaves):

$$
\frac{\left(9 x^{2}+12 x+14\right)(-1+x)}{27\left(\frac{-1+x}{1+x}\right)^{1 / 3}}+\frac{\left(\int \frac{22}{81\left((-1+x)(1+x)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{2}\right)^{1 / 3}}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}(1+x)}
$$

Problem 36: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 78 leaves, 3 steps):

$$
\left(1+\frac{1}{x}\right)^{1 / 3}\left(\frac{-1+x}{x}\right)^{2 / 3} x-\ln \left(\left(1+\frac{1}{x}\right)^{1 / 3}-\left(\frac{-1+x}{x}\right)^{1 / 3}\right)-\frac{\ln (x)}{3}-\frac{2 \arctan \left(\frac{\sqrt{3}}{3}+\frac{2\left(\frac{-1+x}{x}\right)^{1 / 3} \sqrt{3}}{3\left(1+\frac{1}{x}\right)^{1 / 3}}\right) \sqrt{3}}{3}
$$

Result(type 8, 59 leaves):

$$
\frac{-1+x}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}}+\frac{\left(\int \frac{2}{3\left((-1+x)(1+x)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{2}\right)^{1 / 3}}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}(1+x)}
$$

Problem 37: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{-1+x}{1+x}\right)^{1 / 3} x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 81 leaves, 3 steps):

$$
\left(1+\frac{1}{x}\right)^{1 / 3}\left(\frac{-1+x}{x}\right)^{2 / 3}-\ln \left(1+\frac{\left(\frac{-1+x}{x}\right)^{1 / 3}}{\left(1+\frac{1}{x}\right)^{1 / 3}}\right)-\frac{\ln \left(1+\frac{1}{x}\right)}{3}+\frac{2 \arctan \left(-\frac{\sqrt{3}}{3}+\frac{2\left(\frac{-1+x}{x}\right)^{1 / 3} \sqrt{3}}{3\left(1+\frac{1}{x}\right)^{1 / 3}}\right) \sqrt{3}}{3}
$$

Result(type 8, 65 leaves):

$$
\frac{-1+x}{x\left(\frac{-1+x}{1+x}\right)^{1 / 3}}+\frac{\left(\int \frac{2}{3 x\left((-1+x)(1+x)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left((-1+x)(1+x)^{2}\right)^{1 / 3}}{\left(\frac{-1+x}{1+x}\right)^{1 / 3}(1+x)}
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8}} \mathrm{~d} x
$$

Optimal(type 3, 351 leaves, 19 steps):

$$
\begin{aligned}
& \frac{37\left(1-\frac{1}{a x}\right)^{7 / 8}\left(1+\frac{1}{a x}\right)^{1 / 8} x}{96 a^{2}}+\frac{3\left(1-\frac{1}{a x}\right)^{7 / 8}\left(1+\frac{1}{a x}\right)^{1 / 8} x^{2}}{8 a}+\frac{\left(1-\frac{1}{a x}\right)^{7 / 8}\left(1+\frac{1}{a x}\right)^{1 / 8} x^{3}}{3}+\frac{11 \arctan \left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 8}}{\left.\left(1-\frac{1}{a x}\right)^{1 / 8}\right)}\right.}{64 a^{3}} \\
& +\frac{11 \operatorname{arctanh}\left(\frac{\left(1+\frac{1}{a x}\right)^{1 / 8}}{\left(1-\frac{1}{a x}\right)^{1 / 8}}\right)}{64 a^{3}}-\frac{\left.11 \arctan \left(1-\frac{\left(1+\frac{1}{a x}\right)^{1 / 8} \sqrt{2}}{\left(1-\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2}\right)}{128 a^{3}}+\frac{11 \arctan \left(1+\frac{\left(1+\frac{1}{a x}\right)^{1 / 8} \sqrt{2}}{\left(1-\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2}}{128 a^{3}} \\
& -\frac{\left.11 \ln \left(1+\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}-\frac{\left(1+\frac{1}{a x}\right)^{1 / 8} \sqrt{2}}{\left(1-\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2}\right)}{256 a^{3}}+\frac{11 \ln \left(1+\frac{\left(1+\frac{1}{a x}\right)^{1 / 4}}{\left(1-\frac{1}{a x}\right)^{1 / 4}}+\frac{\left(1+\frac{1}{a x}\right)^{1 / 8} \sqrt{2}}{\left(1-\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2}}{256 a^{3}}
\end{aligned}
$$

Result(type 8, 100 leaves):

$$
\frac{\left(32 a^{2} x^{2}+36 a x+37\right)(a x-1)}{96 a^{3}\left(\frac{a x-1}{a x+1}\right)^{1 / 8}}+\frac{\left(\int \frac{11}{128 a^{2}\left((a x-1)(a x+1)^{7}\right)^{1 / 8}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{7}\right)^{1 / 8}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8}(a x+1)}
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8} x^{3}} d x
$$

Optimal (type 3, 575 leaves, 26 steps):

$$
\left.\left.\frac{a^{2}\left(1-\frac{1}{a x}\right)^{7 / 8}\left(1+\frac{1}{a x}\right)^{1 / 8}}{8}+\frac{a^{2}\left(1-\frac{1}{a x}\right)^{7 / 8}\left(1+\frac{1}{a x}\right)^{9 / 8}}{2}-\frac{a^{2} \arctan \left(\frac{2\left(1-\frac{1}{a x}\right)^{1 / 8}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}+\sqrt{2+\sqrt{2}}\right.}{\sqrt{2-\sqrt{2}}}\right) \sqrt{32}\right)
$$

$$
+\frac{a^{2} \arctan \left(\frac{2\left(1-\frac{1}{a x}\right)^{1 / 8}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}+\sqrt{2+\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{32}+\frac{a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}-\frac{\left(1-\frac{1}{a x}\right)^{1 / 8} \sqrt{2-\sqrt{2}}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2-\sqrt{2}}}{64}
$$

$$
-\frac{a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\left(1-\frac{1}{a x}\right)^{1 / 8} \sqrt{2-\sqrt{2}}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2-\sqrt{2}}}{64}-\frac{\left.a^{2} \arctan \left(\frac{2\left(1-\frac{1}{a x}\right)^{1 / 8}}{\left(1+\frac{1}{a x}\right)^{1 / 8}+\sqrt{2-\sqrt{2}}}\right) \sqrt{\sqrt{2+\sqrt{2}}}\right)}{32}
$$

$$
\left.\left.+\frac{a^{2} \arctan \left(\frac{2\left(1-\frac{1}{a x}\right)^{1 / 8}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}+\sqrt{2-\sqrt{2}}\right.}{\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}}\right) a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}-\frac{\left(1-\frac{1}{a x}\right)^{1 / 8} \sqrt{2+\sqrt{2}}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2+\sqrt{2}}
$$

$$
a^{2} \ln \left(1+\frac{\left(1-\frac{1}{a x}\right)^{1 / 4}}{\left(1+\frac{1}{a x}\right)^{1 / 4}}+\frac{\left(1-\frac{1}{a x}\right)^{1 / 8} \sqrt{2+\sqrt{2}}}{\left(1+\frac{1}{a x}\right)^{1 / 8}}\right) \sqrt{2+\sqrt{2}}
$$

Result(type 8, 95 leaves):

$$
\frac{(a x-1)(5 a x+4)}{8 x^{2}\left(\frac{a x-1}{a x+1}\right)^{1 / 8}}+\frac{\left(\int \frac{a^{2}}{32 x\left((a x-1)(a x+1)^{7}\right)^{1 / 8}} \mathrm{~d} x\right)\left((a x-1)(a x+1)^{7}\right)^{1 / 8}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8}(a x+1)}
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{x^{m}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 127 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{3 x^{1+m} \text { hypergeom }\left(\left[\frac{1}{2},-\frac{1}{2}-\frac{m}{2}\right],\left[\frac{1}{2}-\frac{m}{2}\right], \frac{1}{a^{2} x^{2}}\right)}{1+m}-\frac{x^{m} \operatorname{hypergeom}\left(\left[\frac{1}{2},-\frac{m}{2}\right],\left[1-\frac{m}{2}\right], \frac{1}{a^{2} x^{2}}\right)}{a m} \\
& +\frac{4 x^{1+m} \text { hypergeom }\left(\left[\frac{3}{2},-\frac{1}{2}-\frac{m}{2}\right],\left[\frac{1}{2}-\frac{m}{2}\right], \frac{1}{a^{2} x^{2}}\right)}{1+m}+\frac{4 x^{m} \operatorname{hypergeom}\left(\left[\frac{3}{2},-\frac{m}{2}\right],\left[1-\frac{m}{2}\right], \frac{1}{a^{2} x^{2}}\right)}{a m}
\end{aligned}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x^{m}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int x^{m}\left(\frac{a x-1}{a x+1}\right)^{1 / 4} \mathrm{~d} x
$$

Optimal(type 6, 37 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(-1-m,-\frac{1}{4}, \frac{1}{4},-m, \frac{1}{a x},-\frac{1}{a x}\right)}{1+m}
$$

Result(type 8, 21 leaves):

$$
\int x^{m}\left(\frac{a x-1}{a x+1}\right)^{1 / 4} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x^{m}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8}} \mathrm{~d} x
$$

Optimal(type 6, 37 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(-1-m, \frac{1}{8},-\frac{1}{8},-m, \frac{1}{a x},-\frac{1}{a x}\right)}{1+m}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x^{m}}{\left(\frac{a x-1}{a x+1}\right)^{1 / 8}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)} x^{m} \mathrm{~d} x
$$

Optimal(type 6, 41 leaves, 2 steps):

$$
\frac{x^{1+m} \text { AppellF1 }\left(-1-m, \frac{n}{2},-\frac{n}{2},-m, \frac{1}{a x},-\frac{1}{a x}\right)}{1+m}
$$

Result(type 8, 13 leaves):

$$
\int \mathrm{e}^{n} \operatorname{arccoth}(a x) x^{m} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x} \mathrm{~d} x
$$

Optimal(type 5, 115 leaves, 4 steps):

$$
-\frac{2\left(1+\frac{1}{a x}\right)^{\frac{n}{2}} \text { hypergeom }\left(\left[1,-\frac{n}{2}\right],\left[1-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)}{n\left(1-\frac{1}{a x}\right)^{\frac{n}{2}}}+\frac{2^{1+\frac{n}{2}} \operatorname{hypergeom}\left(\left[-\frac{n}{2},-\frac{n}{2}\right],\left[1-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{2 a}\right)}{n\left(1-\frac{1}{a x}\right)^{\frac{n}{2}}}
$$

Result(type 8, 13 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 5, 143 leaves, 4 steps):
$\frac{a^{3} n\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}}}{6}+\frac{a^{2}\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}}}{3 x}$

$$
+\frac{2^{\frac{n}{2}} a^{3}\left(n^{2}+2\right)\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}} \text { hypergeom }\left(\left[-\frac{n}{2}, 1-\frac{n}{2}\right],\left[2-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{2 a}\right)}{3(2-n)}
$$

Result(type 8, 13 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x^{4}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 5, 159 leaves, 4 steps):
$\frac{a^{3}\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}}\left(a\left(n^{2}+6\right)+\frac{2 n}{x}\right)}{24}+\frac{a^{2}\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}}}{4 x^{2}}$

$$
+\frac{2^{-2+\frac{n}{2}} a^{4} n\left(n^{2}+8\right)\left(1-\frac{1}{a x}\right)^{1-\frac{n}{2}} \text { hypergeom }\left(\left[-\frac{n}{2}, 1-\frac{n}{2}\right],\left[2-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{2 a}\right)}{3(2-n)}
$$

Result(type 8, 13 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x^{5}} \mathrm{~d} x
$$

Problem 51: Unable to integrate problem.

$$
\int(-a c x+c)^{p} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 5, 88 leaves, 3 steps):

$$
\frac{\left(\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)^{-\frac{1}{2}-p} x(-a c x+c)^{p} \operatorname{hypergeom}\left(\left[-1-p,-\frac{1}{2}-p\right],[-p], \frac{2}{\left(a+\frac{1}{x}\right) x}\right) \sqrt{1-\frac{1}{a x} \sqrt{1+\frac{1}{a x}}}}{1+p}
$$

Result(type 8, 27 leaves):

$$
\int(-a c x+c)^{p} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int(-a c x+c) \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 3, 55 leaves, 7 steps):

$$
-\frac{3 c \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{2 a}+2 c x \sqrt{1-\frac{1}{a^{2} x^{2}}}-\frac{a c x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2}
$$

Result(type 3, 152 leaves):

$$
\begin{aligned}
& \frac{1}{2 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} a}\left(\sqrt { \frac { a x - 1 } { a x + 1 } } (a x + 1) c \left(-x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+4 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}+\ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a\right.\right. \\
& \left.\left.-4 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)\right)
\end{aligned}
$$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int(-a c x+c)^{3}\left(\frac{a x-1}{a x+1}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 134 leaves, 10 steps):

$$
-\frac{315 c^{3} \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{8 a}+\frac{32 c^{3}\left(a-\frac{1}{x}\right)}{a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+30 c^{3} x \sqrt{1-\frac{1}{a^{2} x^{2}}}-\frac{67 a c^{3} x^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{8}+2 a^{2} c^{3} x^{3} \sqrt{1-\frac{1}{a^{2} x^{2}}}-\frac{a^{3} c^{3} x^{4} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{4}
$$

Result(type 3, 541 leaves):
$\frac{1}{8 a \sqrt{a^{2}}(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-2 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{3} a^{3}+16 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2}-4 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{2} a^{2}\right.\right.$
$-69 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+32 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x a+384 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-2 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}$
$-138 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}+69 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}-384 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}-112((a x-1)(a x$
$+1))^{3 / 2} \sqrt{a^{2}}+768 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a-69 x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+138 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x a^{2}$
$-768 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}+384 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}+69 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) a$
$\left.\left.-384 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right) c^{3}\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)$

Problem 57: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}{-a c x+c} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 6 steps):

$$
-\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a c}+\frac{2\left(a-\frac{1}{x}\right)}{a^{2} c \sqrt{1-\frac{1}{a^{2} x^{2}}}}
$$

Result(type 3, 247 leaves):

$$
\begin{aligned}
& -\frac{1}{a \sqrt{a^{2}} c(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2} x^{2}+a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+((a x-1)(a x+1))^{3} /} \begin{array}{l}
2 \sqrt{a^{2}}-2 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+2 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} \\
\quad+\ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{}\right)
\end{array}\right) .\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)
\end{aligned}
$$

[^1]$$
\int \frac{x}{\sqrt{\frac{-1+x}{1+x}}(1-x)} \mathrm{d} x
$$

Optimal(type 3, 41 leaves, 8 steps):

$$
-2 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{x^{2}}}\right)+\frac{2\left(1+\frac{1}{x}\right)}{\sqrt{1-\frac{1}{x^{2}}}}-x \sqrt{1-\frac{1}{x^{2}}}
$$

Result(type 3, 105 leaves):

$$
\frac{\left(x^{2}-1\right)^{3 / 2}-2 \sqrt{x^{2}-1} x^{2}-2 \ln \left(x+\sqrt{x^{2}-1}\right) x^{2}+4 x \sqrt{x^{2}-1}+4 \ln \left(x+\sqrt{x^{2}-1}\right) x-2 \sqrt{x^{2}-1}-2 \ln \left(x+\sqrt{x^{2}-1}\right)}{(-1+x) \sqrt{\frac{-1+x}{1+x}} \sqrt{(-1+x)(1+x)}}
$$

Problem 79: Unable to integrate problem.

$$
\int \frac{x^{m} \sqrt{-a c x+c}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 5, 57 leaves, 3 steps):

$$
\frac{2 x^{1+m} \text { hypergeom }\left(\left[-\frac{1}{2},-\frac{3}{2}-m\right],\left[-\frac{1}{2}-m\right],-\frac{1}{a x}\right) \sqrt{-a c x+c}}{(3+2 m) \sqrt{1-\frac{1}{a x}}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{x^{m} \sqrt{-a c x+c}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Problem 89: Unable to integrate problem.

$$
\int x^{m} \sqrt{-a c x+c} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 5, 117 leaves, 4 steps):

$$
-\frac{2(5+4 m) x^{m} \text { hypergeom }\left(\left[\frac{1}{2},-\frac{1}{2}-m\right],\left[\frac{1}{2}-m\right],-\frac{1}{a x}\right) \sqrt{-a c x+c}}{a(1+2 m)(3+2 m) \sqrt{1-\frac{1}{a x}}}+\frac{2 x^{1+m} \sqrt{1+\frac{1}{a x}} \sqrt{-a c x+c}}{(3+2 m) \sqrt{1-\frac{1}{a x}}}
$$

Result (type 8, 30 leaves):

$$
\int x^{m} \sqrt{-a c x+c} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Problem 98: Unable to integrate problem.

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}(-a c x+c)^{-2+\frac{n}{2}} \mathrm{~d} x
$$

Optimal(type 5, 80 leaves, 3 steps):

$$
-\frac{2\left(1-\frac{1}{a x}\right)^{2-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-1+\frac{n}{2}} x(-a c x+c)^{-2+\frac{n}{2}} \text { hypergeom }\left(\left[2,1-\frac{n}{2}\right],\left[2-\frac{n}{2}\right], \frac{2}{\left(a+\frac{1}{x}\right) x}\right)}{2-n}
$$

Result(type 8, 23 leaves):

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}(-a c x+c)^{-2+\frac{n}{2}} \mathrm{~d} x
$$

Problem 99: Unable to integrate problem.

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}(-a c x+c)^{p} \mathrm{~d} x
$$

Optimal(type 5, 100 leaves, 3 steps):

$$
\frac{\left(\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)^{\frac{n}{2}-p}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}} x(-a c x+c)^{p} \operatorname{hypergeom}\left(\left[-1-p, \frac{n}{2}-p\right],[-p], \frac{2}{\left(a+\frac{1}{x}\right) x}\right)}{(1+p)\left(1-\frac{1}{a x}\right)^{\frac{n}{2}}}
$$

Result (type 8, 19 leaves):

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}(-a c x+c)^{p} \mathrm{~d} x
$$

Problem 101: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{\sqrt{-a c x+c}} \mathrm{~d} x
$$

Optimal(type 5, 86 leaves, 3 steps):

$$
\frac{2\left(\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)^{\frac{1}{2}+\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}} x \text { hypergeom }\left(\left[-\frac{1}{2}, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{1}{2}\right], \frac{2}{\left(a+\frac{1}{x}\right) x}\right)}{\left(1-\frac{1}{a x}\right)^{\frac{n}{2}} \sqrt{-a c x+c}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{\sqrt{-a c x+c}} \mathrm{~d} x
$$

Problem 102: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c-\frac{c}{a x}\right)^{3}}{\sqrt{\frac{a x-1}{a x+1}}} d x
$$

Optimal(type 3, 78 leaves, 8 steps):

$$
c^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2} x+\frac{c^{3} \operatorname{arccsc}(a x)}{2 a}-\frac{2 c^{3} \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a}+\frac{c^{3}\left(4 a+\frac{1}{x}\right) \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2 a^{2}}
$$

Result(type 3, 199 leaves):

$$
\begin{aligned}
& -\frac{1}{2 \sqrt{\frac{a x-1}{a x+1}} \sqrt{(a x-1)(a x+1)} a^{3} x^{2} \sqrt{a^{2}}}\left((a x - 1) c ^ { 3 } \left(-4 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+4 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}}-a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}\right.\right. \\
& \left.\left.\quad+4 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}-a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}-\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right)\right)
\end{aligned}
$$

[^2]$$
\int \frac{c-\frac{c}{a x}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 3, 25 leaves, 3 steps):

$$
\frac{c \operatorname{arccsc}(a x)}{a}+c x \sqrt{1-\frac{1}{a^{2} x^{2}}}
$$

Result(type 3, 62 leaves):

$$
\frac{(a x-1) c\left(\sqrt{a^{2} x^{2}-1}+\arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right)\right)}{\sqrt{\frac{a x-1}{a x+1}} \sqrt{(a x-1)(a x+1)} a}
$$

Problem 104: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{\frac{a x-1}{a x+1}}\left(c-\frac{c}{a x}\right)} \mathrm{d} x
$$

Optimal(type 3, 64 leaves, 7 steps):

$$
\frac{2 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a c}-\frac{2\left(a+\frac{1}{x}\right)}{a^{2} c \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{c}
$$

Result(type 3, 249 leaves):
$-\frac{1}{a(a x-1) \sqrt{a^{2}} c \sqrt{(a x-1)(a x+1)} \sqrt{\frac{a x-1}{a x+1}}}\left(-2 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+((a x\right.$ -1) $(a x+1))^{3 / 2} \sqrt{a^{2}}+4 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+4 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-2 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}$ $\left.-2 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)$

[^3]$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\left(c-\frac{c}{a x}\right)^{4}} d x
$$

Optimal(type 3, 180 leaves, 11 steps):

$$
\begin{aligned}
& \frac{16\left(9 a-\frac{5}{x}\right)}{63 a^{2} c^{4}\left(1-\frac{1}{a^{2} x^{2}}\right)^{7 / 2}-\frac{64\left(a+\frac{1}{x}\right)}{9 a^{2} c^{4}\left(1-\frac{1}{a^{2} x^{2}}\right)^{9 / 2}}-\frac{8\left(21 a+\frac{41}{x}\right)}{105 a^{2} c^{4}\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}}+\frac{-735 a-\frac{1417}{x}}{315 a^{2} c^{4}\left(1-\frac{1}{a^{2} x^{2}}\right.}} \begin{array}{l}
+\frac{-2205 a-\frac{3149}{x}}{315 a^{2} c^{4} \sqrt{1-\frac{1}{a^{2} x^{2}}}}
\end{array}+\frac{x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{c^{4}}
\end{aligned}
$$

Result (type 3, 621 leaves):

$$
\begin{aligned}
& -\frac{1}{315 a(a x-1)^{4} \sqrt{a^{2}} c^{4} \sqrt{(a x-1)(a x+1)}(a x+1)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}\left(-2205 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{6} a^{6}\right. \\
& -2205 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{6} a^{7}+1890((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{4} a^{4}+13230 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{5} a^{5} \\
& +13230 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{5} a^{6}-6376((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{3} a^{3}-33075 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4} \\
& -33075 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}+8646 \sqrt{a^{2}}((a x-1)(a x+1))^{3} / 2 x^{2} a^{2}+44100 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3} \\
& +44100 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-5349 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x a-33075 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2} \\
& -33075 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+1259((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}}+13230 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a \\
& +13230 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-2205 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}-2205 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right)(a)
\end{aligned}
$$

[^4]$$
\int\left(c-\frac{c}{a x}\right)^{2} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 8 steps):

$$
-\frac{3 c^{2} \operatorname{arccsc}(a x)}{a}-\frac{3 c^{2} \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a}-\frac{c^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a}+c^{2} x \sqrt{1-\frac{1}{a^{2} x^{2}}}
$$

Result(type 3, 226 leaves):
$\frac{1}{\sqrt{(a x-1)(a x+1)} a^{2} x \sqrt{a^{2}}}\left(\sqrt{\frac{a x-1}{a x+1}}(a x+1) c^{2}\left(-a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}+4 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right.\right.$

$$
\left.\left.-3 x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}}+\ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x a^{2}-4 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-3 a \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) x \sqrt{a^{2}}\right)\right)
$$

Problem 114: Result more than twice size of optimal antiderivative.

$$
\int\left(c-\frac{c}{a x}\right)^{3}\left(\frac{a x-1}{a x+1}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 121 leaves, 10 steps):

$$
\frac{33 c^{3} \operatorname{arccsc}(a x)}{2 a}-\frac{6 c^{3} \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a}+\frac{32 c^{3}\left(a-\frac{1}{x}\right)}{a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{6 c^{3} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{a}-\frac{c^{3} \sqrt{1-\frac{1}{a^{2} x^{2}}}}{2 a^{2} x}+c^{3} x \sqrt{1-\frac{1}{a^{2} x^{2}}}
$$

Result(type 3, 449 leaves):

$$
\begin{aligned}
& -\frac{1}{2 \sqrt{a^{2}} x^{2} a^{3}(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-12 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{5} a^{5}+12 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{3} a^{3}-57 \sqrt{a^{2}} \sqrt{a^{2} x^{2}-1} x^{4} a^{4}\right.\right. \\
& +12 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-33 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{4} a^{4}+32 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2}+23 \sqrt{a^{2}}\left(a^{2} x^{2}-1\right)^{3 / 2} x^{2} a^{2} \\
& -78 a^{3} x^{3} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}+24 \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-66 \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{3} a^{3}+10 x\left(a^{2} x^{2}-1\right)^{3 / 2} a \sqrt{a^{2}} \\
& \left.\left.-33 a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}+12 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}}}{\sqrt{a^{2}}}\right) x^{2}-33 a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}-\left(a^{2} x^{2}-1\right)^{3 / 2} \sqrt{a^{2}}\right) c^{3}\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 115: Result more than twice size of optimal antiderivative.

$$
\int\left(c-\frac{c}{a x}\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 69 leaves, 8 steps):

$$
\frac{c \operatorname{arccsc}(a x)}{a}-\frac{4 c \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a}+\frac{8 c\left(a-\frac{1}{x}\right)}{a^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+c x \sqrt{1-\frac{1}{a^{2} x^{2}}}
$$

Result(type 3, 375 leaves):

$$
\begin{aligned}
& -\frac{1}{a \sqrt{a^{2}}(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-4 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-a^{2} \sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} x^{2}+4 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}\right.\right. \\
& -a^{2} \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}} x^{2}+4((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}}-8 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a-2 x \sqrt{a^{2} x^{2}-1} a \sqrt{a^{2}} \\
& +8 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-2 a \arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) x \sqrt{a^{2}}-4 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}-\sqrt{a^{2} x^{2}-1} \sqrt{a^{2}} \\
& \left.\left.\quad+4 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a-\arctan \left(\frac{1}{\sqrt{a^{2} x^{2}-1}}\right) \sqrt{a^{2}}\right) c\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 116: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}{\left(c-\frac{c}{a x}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 6 steps):

$$
-\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a c^{2}}-\frac{\left(a-\frac{1}{x}\right) x}{a c^{2} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{2 x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{c^{2}}
$$

Result(type 3, 249 leaves):

$$
\begin{aligned}
& -\frac{1}{2 a \sqrt{a^{2}} c^{2}(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-3 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+2 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+((a x-1)(a x\right.\right. \\
& +1))^{3 / 2} \sqrt{a^{2}}-6 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+4 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-3 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}
\end{aligned}
$$

$$
\left.\left.+2 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)
$$

Problem 117: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}{\left(c-\frac{c}{a x}\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 97 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a c^{4}}-\frac{a x}{3 c^{4}\left(a-\frac{1}{x}\right) \sqrt{1-\frac{1}{a^{2} x^{2}}}}-\frac{\left(4 a+\frac{3}{x}\right) x}{3 a c^{4} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{8 x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{3 c^{4}}
$$

Result(type 3, 522 leaves):
$-\frac{1}{24 a \sqrt{a^{2}} c^{4}(a x-1)^{4} \sqrt{(a x-1)(a x+1)}}\left(\left(-45 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{5} a^{5}-24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{5} a^{6}+21((a x\right.\right.$ $-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{3} a^{3}+45 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}+24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}+11 \sqrt{a^{2}}((a x-1)(a x$
$+1))^{3 / 2} x^{2} a^{2}+90 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}+48 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-5 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x a$
$-90 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}-48 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}-19((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}}$
$-45 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a-24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}+45 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}$
$\left.\left.+24 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)$

Problem 118: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}{\left(c-\frac{c}{a x}\right)^{5}} \mathrm{~d} x
$$

Optimal(type 3, 122 leaves, 9 steps):

$$
-\frac{2\left(a+\frac{1}{x}\right)}{5 a^{2} c^{5}\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}}+\frac{-10 a-\frac{13}{x}}{15 a^{2} c^{5}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}}+\frac{2 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a^{2} x^{2}}}\right)}{a c^{5}}+\frac{-30 a-\frac{41}{x}}{15 a^{2} c^{5} \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{x \sqrt{1-\frac{1}{a^{2} x^{2}}}}{c^{5}}
$$

Result(type 3, 614 leaves):
$-\frac{1}{30 a \sqrt{a^{2}} c^{5} \sqrt{(a x-1)(a x+1)}(a x-1)^{5}}\left(\left(-75 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{6} a^{6}-60 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{6} a^{7}+45((a x\right.\right.$ $-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{4} a^{4}+150 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{5} a^{5}+120 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{5} a^{6}+2((a x-1)(a x$ $+1))^{3 / 2} \sqrt{a^{2}} x^{3} a^{3}+75 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}+60 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-64 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2}$
$-300 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}-240 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-14 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x a$
$+75 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+60 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+37((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}}$
$+150 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+120 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-75 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}$
$\left.\left.-60 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)$

Problem 122: Result more than twice size of optimal antiderivative.

$$
\int \frac{a x+1}{(a x-1)\left(c-\frac{c}{a x}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 81 leaves, 10 steps):

$$
-\frac{7}{3 a\left(c-\frac{c}{a x}\right)^{3 / 2}}+\frac{x}{\left(c-\frac{c}{a x}\right)^{3 / 2}}+\frac{7 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right)}{a c^{3 / 2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}
$$

Result(type 3, 264 leaves):
$\frac{1}{6 \sqrt{(a x-1) x} c^{2} a^{5 / 2}(a x-1)^{3}}\left(\sqrt{\frac{c(a x-1)}{a x}} x\left(42 a^{11 / 2} \sqrt{(a x-1) x} x^{3}-36 a^{9 / 2}((a x-1) x)^{3 / 2} x-126 a^{9 / 2} \sqrt{(a x-1) x} x^{2}+28 a^{7 / 2}((a x\right.\right.$

$$
\begin{aligned}
& -1) x)^{3 / 2}+126 a^{7 / 2} \sqrt{(a x-1) x} x+21 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{3} a^{5}-63 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{2} a^{4} \\
& \left.\left.-42 \sqrt{(a x-1) x} a^{5 / 2}+63 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x a^{3}-21 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) a^{2}\right)\right)
\end{aligned}
$$

Problem 123: Result more than twice size of optimal antiderivative.

$$
\int \frac{a x+1}{(a x-1)\left(c-\frac{c}{a x}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 102 leaves, 11 steps):

$$
-\frac{9}{5 a\left(c-\frac{c}{a x}\right)^{5 / 2}}-\frac{3}{a c\left(c-\frac{c}{a x}\right)^{3 / 2}}+\frac{x}{\left(c-\frac{c}{a x}\right)^{5 / 2}}+\frac{9 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right)}{a c^{5 / 2}}-\frac{9}{a c^{2} \sqrt{c-\frac{c}{a x}}}
$$

Result(type 3, 332 leaves):
$\frac{1}{10 \sqrt{(a x-1) x} c^{3} a^{7 / 2}(a x-1)^{4}}\left(\sqrt{\frac{c(a x-1)}{a x}} x\left(90 a^{15 / 2} \sqrt{(a x-1) x} x^{4}-80 a^{13 / 2}((a x-1) x)^{3 / 2} x^{2}-360 a^{13 / 2} \sqrt{(a x-1) x} x^{3}\right.\right.$

$$
\begin{aligned}
& +132 a^{11 / 2}((a x-1) x)^{3 / 2} x+540 a^{11 / 2} \sqrt{(a x-1) x} x^{2}-60 a^{9 / 2}((a x-1) x)^{3 / 2}+45 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{4} a^{7} \\
& -360 a^{9 / 2} \sqrt{(a x-1) x} x-180 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{3} a^{6}+90 \sqrt{(a x-1) x} a^{7 / 2}+270 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{2} a^{5} \\
& \left.\left.-180 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x a^{4}+45 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) a^{3}\right)\right)
\end{aligned}
$$

Problem 129: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c-\frac{c}{a x}\right)^{7 / 2}(a x-1)}{a x+1} \mathrm{~d} x
$$

Optimal(type 3, 136 leaves, 14 steps):
$-\frac{5 c^{2}\left(c-\frac{c}{a x}\right)^{3 / 2}}{3 a}+\frac{3 c\left(c-\frac{c}{a x}\right)^{5 / 2}}{5 a}+\left(c-\frac{c}{a x}\right)^{7 / 2} x-\frac{11 c^{7 / 2} \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right)}{a}+\frac{32 c^{7 / 2} \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}} \sqrt{2}}{2 \sqrt{c}}\right) \sqrt{2}}{a}$
$-\frac{21 c^{3} \sqrt{c-\frac{c}{a x}}}{a}$
Result(type 3, 275 leaves):
$\frac{1}{30 x^{3} a^{3} \sqrt{(a x-1) x} \sqrt{\frac{1}{a}}}\left(\sqrt{\frac{c(a x-1)}{a x}} c^{3}\left(555 a^{5} / 2 \ln \left(\frac{2 \sqrt{x^{2} a-x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{4} \sqrt{\frac{1}{a}}\right.\right.$

$$
\begin{aligned}
& -720 a^{5 / 2} \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{4} \sqrt{\frac{1}{a}}-1110 a^{3} \sqrt{x^{2} a-x} x^{4} \sqrt{\frac{1}{a}}+480 a^{3} \sqrt{(a x-1) x} x^{4} \sqrt{\frac{1}{a}}+660 a^{2}\left(x^{2} a-x\right)^{3 / 2} x^{2} \sqrt{\frac{1}{a}} \\
& \left.\left.-480 a^{2} \sqrt{2} \ln \left(\frac{2 \sqrt{2} \sqrt{\frac{1}{a}} \sqrt{(a x-1) x} a-3 a x+1}{a x+1}\right) x^{4}-92 a\left(x^{2} a-x\right)^{3 / 2} x \sqrt{\frac{1}{a}}+12\left(x^{2} a-x\right)^{3 / 2} \sqrt{\frac{1}{a}}\right)\right)
\end{aligned}
$$

Problem 130: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(c-\frac{c}{a x}\right)^{5 / 2}(a x-1)}{a x+1} \mathrm{~d} x
$$

Optimal(type 3, 115 leaves, 13 steps):

$$
\frac{c\left(c-\frac{c}{a x}\right)^{3 / 2}}{3 a}+\left(c-\frac{c}{a x}\right)^{5 / 2} x-\frac{9 c^{5 / 2} \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right)}{a}+\frac{16 c^{5 / 2 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}} \sqrt{2}}{2 \sqrt{c}}\right) \sqrt{2}}}{a}-\frac{7 c^{2} \sqrt{c-\frac{c}{a x}}}{a}
$$

Result(type 3, 249 leaves):
$\frac{1}{6 x^{2} a^{2} \sqrt{(a x-1) x} \sqrt{\frac{1}{a}}}\left(\sqrt{\frac{c(a x-1)}{a x}} c^{2}\left(45 a^{3 / 2} \ln \left(\frac{2 \sqrt{x^{2} a-x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{3} \sqrt{\frac{1}{a}}-72 a^{3} / 2 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{3} \sqrt{\frac{1}{a}}\right.\right.$
$-90 a^{2} \sqrt{x^{2} a-x} x^{3} \sqrt{\frac{1}{a}}+48 a^{2} \sqrt{(a x-1) x} x^{3} \sqrt{\frac{1}{a}}+48 a\left(x^{2} a-x\right)^{3 / 2} x \sqrt{\frac{1}{a}}-48 a \sqrt{2} \ln \left(\frac{2 \sqrt{2} \sqrt{\frac{1}{a}} \sqrt{(a x-1) x} a-3 a x+1}{a x+1}\right) x^{3}$
$\left.\left.-4\left(x^{2} a-x\right)^{3 / 2} \sqrt{\frac{1}{a}}\right)\right)$

Problem 131: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{c-\frac{c}{a x}}(a x-1)}{a x+1} \mathrm{~d} x
$$

Optimal(type 3, 75 leaves, 11 steps):

$$
-\frac{5 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right) \sqrt{c}}{a}+\frac{4 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}} \sqrt{2}}{2 \sqrt{c}}\right) \sqrt{2} \sqrt{c}}{a}+x \sqrt{c-\frac{c}{a x}}
$$

Result(type 3, 188 leaves):

$$
\begin{aligned}
& \frac{1}{2 \sqrt{(a x-1) x} a^{3 / 2} \sqrt{\frac{1}{a}}}\left(\sqrt { \frac { c (a x - 1) } { a x } } x \left(-2 \sqrt{x^{2} a-x} a^{3 / 2} \sqrt{\frac{1}{a}}+4 \sqrt{(a x-1) x} a^{3 / 2} \sqrt{\frac{1}{a}}+\ln \left(\frac{2 \sqrt{x^{2} a-x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) a \sqrt{\frac{1}{a}}\right.\right. \\
& \left.\left.-6 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) a \sqrt{\frac{1}{a}}-4 \sqrt{2} \ln \left(\frac{2 \sqrt{2} \sqrt{\frac{1}{a}} \sqrt{(a x-1) x} a-3 a x+1}{a x+1}\right) \sqrt{a}\right)\right)
\end{aligned}
$$

Problem 139: Unable to integrate problem.

$$
\int x^{m} \sqrt{c-\frac{c}{a x}} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Optimal(type 5, 114 leaves, 4 steps):

$$
-\frac{(3+4 m) x^{m} \text { hypergeom }\left(\left[\frac{1}{2},-m\right],[1-m],-\frac{1}{a x}\right) \sqrt{c-\frac{c}{a x}}}{2 a m(1+m) \sqrt{1-\frac{1}{a x}}}+\frac{x^{1+m} \sqrt{1+\frac{1}{a x}} \sqrt{c-\frac{c}{a x}}}{(1+m) \sqrt{1-\frac{1}{a x}}}
$$

Result(type 8, 34 leaves):

$$
\int x^{m} \sqrt{c-\frac{c}{a x}} \sqrt{\frac{a x-1}{a x+1}} \mathrm{~d} x
$$

Problem 141: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{c-\frac{c}{a x}}(a x-1)}{(a x+1) x} \mathrm{~d} x
$$

Optimal(type 3, 69 leaves, 11 steps):

$$
2 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right) \sqrt{c}-4 \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}} \sqrt{2}}{2 \sqrt{c}}\right) \sqrt{2} \sqrt{c}+2 \sqrt{c-\frac{c}{a x}}
$$

Result(type 3, 218 leaves):

$$
\begin{aligned}
& -\frac{1}{x \sqrt{(a x-1) x} \sqrt{\frac{1}{a}}}\left(\sqrt { \frac { c (a x - 1) } { a x } } \left(2 \sqrt{a} \ln \left(\frac{2 \sqrt{x^{2} a-x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{2} \sqrt{\frac{1}{a}}-3 \sqrt{a} \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{2} \sqrt{\frac{1}{a}}\right.\right. \\
& \left.\left.\quad-4 a \sqrt{x^{2} a-x} x^{2} \sqrt{\frac{1}{a}}+2 \sqrt{(a x-1) x} a x^{2} \sqrt{\frac{1}{a}}+2\left(x^{2} a-x\right)^{3 / 2} \sqrt{\frac{1}{a}}-2 \sqrt{2} \ln \left(\frac{2 \sqrt{2} \sqrt{\frac{1}{a} \sqrt{(a x-1) x} a-3 a x+1}}{a x+1}\right) x^{2}\right)\right)
\end{aligned}
$$

Problem 142: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{c-\frac{c}{a x}}(a x-1)}{(a x+1) x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 94 leaves, 10 steps):

$$
\frac{2 a^{2}\left(c-\frac{c}{a x}\right)^{3 / 2}}{3 c}+\frac{2 a^{2}\left(c-\frac{c}{a x}\right)^{5 / 2}}{5 c^{2}}-4 a^{2} \operatorname{arctanh}\left(\frac{\sqrt{c-\frac{c}{a x}} \sqrt{2}}{2 \sqrt{c}}\right) \sqrt{2} \sqrt{c}+4 a^{2} \sqrt{c-\frac{c}{a x}}
$$

Result(type 3, 269 leaves):
$-\frac{1}{15 x^{3} \sqrt{(a x-1) x} \sqrt{\frac{1}{a}}}\left(\sqrt{\frac{c(a x-1)}{a x}}\left(45 a^{5 / 2} \ln \left(\frac{2 \sqrt{x^{2} a-x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{4} \sqrt{\frac{1}{a}}-45 a^{5} / 2 \ln \left(\frac{2 \sqrt{(a x-1) x} \sqrt{a}+2 a x-1}{2 \sqrt{a}}\right) x^{4} \sqrt{\frac{1}{a}}\right.\right.$
$-90 a^{3} \sqrt{x^{2} a-x} x^{4} \sqrt{\frac{1}{a}}+30 a^{3} \sqrt{(a x-1) x} x^{4} \sqrt{\frac{1}{a}}+60 a^{2}\left(x^{2} a-x\right)^{3 / 2} x^{2} \sqrt{\frac{1}{a}}-30 a^{2} \sqrt{2} \ln \left(\frac{2 \sqrt{2} \sqrt{\frac{1}{a}} \sqrt{(a x-1) x} a-3 a x+1}{a x+1}\right) x^{4}$
$\left.\left.-16 a\left(x^{2} a-x\right)^{3 / 2} x \sqrt{\frac{1}{a}}+6\left(x^{2} a-x\right)^{3 / 2} \sqrt{\frac{1}{a}}\right)\right)$

Problem 146: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{\sqrt{c-\frac{c}{a x}}} \mathrm{~d} x
$$

Optimal(type 6, 93 leaves, 3 steps):

$$
-\frac{2^{\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{1+\frac{n}{2}} \text { AppellF1 }\left(1+\frac{n}{2}, \frac{1}{2}+\frac{n}{2}, 2,2+\frac{n}{2}, \frac{a+\frac{1}{x}}{2 a}, 1+\frac{1}{a x}\right) \sqrt{1-\frac{1}{a x}}}{a(2+n) \sqrt{c-\frac{c}{a x}}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{\sqrt{c-\frac{c}{a x}}} \mathrm{~d} x
$$

Problem 147: Unable to integrate problem.

$$
\int \frac{\left(c-\frac{c}{a x}\right)^{p}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 6, 76 leaves, 3 steps):

$$
-\frac{2^{\frac{1}{2}+p}\left(1+\frac{1}{a x}\right)^{3 / 2}\left(c-\frac{c}{a x}\right)^{p} \text { AppellF1 }\left(\frac{3}{2}, \frac{1}{2}-p, 2, \frac{5}{2}, \frac{a+\frac{1}{x}}{2 a}, 1+\frac{1}{a x}\right)}{3 a\left(1-\frac{1}{a x}\right)^{p}}
$$

Result(type 8, 31 leaves):

$$
\int \frac{\left(c-\frac{c}{a x}\right)^{p}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Problem 169: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1)\left(-a^{2} c x^{2}+c\right)^{9 / 2}}{a x-1} \mathrm{~d} x
$$

Optimal(type 3, 144 leaves, 10 steps):
$-\frac{77 c^{3} x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{384}-\frac{77 c^{2} x\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{480}-\frac{11 c x\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{80}+\frac{11\left(-a^{2} c x^{2}+c\right)^{9 / 2}}{90 a}+\frac{(a x+1)\left(-a^{2} c x^{2}+c\right)^{9 / 2}}{10 a}$

$$
-\frac{77 c^{9 / 2} \arctan \left(\frac{a x \sqrt{c}}{\sqrt{-a^{2} c x^{2}+c}}\right)}{256 a}-\frac{77 c^{4} x \sqrt{-a^{2} c x^{2}+c}}{256}
$$

Result(type 3, 349 leaves):
$\frac{x\left(-a^{2} c x^{2}+c\right)^{9 / 2}}{10}+\frac{9 c x\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{80}+\frac{21 c^{2} x\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{160}+\frac{21 c^{3} x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{128}+\frac{63 c^{4} x \sqrt{-a^{2} c x^{2}+c}}{256}$
$+\frac{63 c^{5} \arctan \left(\frac{\sqrt{c a^{2}} x}{\sqrt{-a^{2} c x^{2}+c}}\right)}{256 \sqrt{c a^{2}}}+\frac{2\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{9 / 2}}{9 a}-\frac{c\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{7 / 2} x}{4}$
$-\frac{7 c^{2}\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{5 / 2} x}{24}-\frac{35 c^{3}\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{3 / 2} x}{96}-\frac{35 c^{4} \sqrt{-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c x}}{64}$
$-\frac{35 c^{5} \arctan \left(\frac{\sqrt{c a^{2}} x}{\left.\sqrt{-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c}\right)}\right.}{64 \sqrt{c a^{2}}}$

Problem 170: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1)\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{a x-1} \mathrm{~d} x
$$

Optimal(type 3, 125 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{15 c^{2} x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{64}-\frac{3 c x\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{16}+\frac{9\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{56 a}+\frac{(a x+1)\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{8 a}-\frac{45 c^{7 / 2} \arctan \left(\frac{a x \sqrt{c}}{\sqrt{-a^{2} c x^{2}+c}}\right)}{128 a} \\
& \quad-\frac{45 c^{3} x \sqrt{-a^{2} c x^{2}+c}}{128}
\end{aligned}
$$

Result(type 3, 295 leaves):

$$
\begin{aligned}
& \frac{x\left(-a^{2} c x^{2}+c\right)^{7 / 2}}{8}+\frac{7 c x\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{48}+\frac{35 c^{2} x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{192}+\frac{35 c^{3} x \sqrt{-a^{2} c x^{2}+c}}{128}+\frac{35 c^{4} \arctan \left(\frac{\sqrt{c a^{2}} x}{\sqrt{-a^{2} c x^{2}+c}}\right)}{128 \sqrt{c a^{2}}} \\
& +\frac{2\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{7 / 2}}{7 a}-\frac{c\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{5 / 2} x}{3}-\frac{5 c^{2}\left(-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c\right)^{3 / 2} x}{12} \\
& \quad-\frac{5 c^{3} \sqrt{-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c x}}{8}-\frac{5 c^{4} \arctan \left(\frac{\sqrt{c a^{2}} x}{\sqrt{-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c}}\right)}{8 \sqrt{c a^{2}}}
\end{aligned}
$$

Problem 174: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{5 / 2}(a x-1)}{a x+1} \mathrm{~d} x
$$

Optimal(type 3, 107 leaves, 8 steps):

$$
-\frac{7 c x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{24}-\frac{7\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{30 a}-\frac{(-a x+1)\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{6 a}-\frac{7 c^{5 / 2} \arctan \left(\frac{a x \sqrt{c}}{\sqrt{-a^{2} c x^{2}+c}}\right)}{16 a}-\frac{7 c^{2} x \sqrt{-a^{2} c x^{2}+c}}{16}
$$

Result(type 3, 225 leaves):

$$
\begin{aligned}
& \frac{x\left(-a^{2} c x^{2}+c\right)^{5 / 2}}{6}+\frac{5 c x\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{24}+\frac{5 c^{2} x \sqrt{-a^{2} c x^{2}+c}}{16}+\frac{5 c^{3} \arctan \left(\frac{\sqrt{c a^{2} x}}{\sqrt{-a^{2} c x^{2}+c}}\right)}{16 \sqrt{c a^{2}}}-\frac{2\left(-\left(x+\frac{1}{a}\right)^{2} a^{2} c+2\left(x+\frac{1}{a}\right) a c\right)^{5 / 2}}{5 a} \\
& \quad-\frac{c\left(-\left(x+\frac{1}{a}\right)^{2} a^{2} c+2\left(x+\frac{1}{a}\right) a c\right)^{3 / 2} x}{2}-\frac{3 c^{2} \sqrt{-\left(x+\frac{1}{a}\right)^{2} a^{2} c+2\left(x+\frac{1}{a}\right) a c x}}{4}-\frac{3 c^{3} \arctan \left(\frac{\sqrt{c a^{2} x}}{\left.\sqrt{-\left(x+\frac{1}{a}\right)^{2} a^{2} c+2\left(x+\frac{1}{a}\right) a c}\right)}\right.}{4 \sqrt{c a^{2}}}
\end{aligned}
$$

Problem 184: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1) \sqrt{-a^{2} c x^{2}+c}}{(a x-1) x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 83 leaves, 8 steps):

$$
a^{3} \operatorname{arctanh}\left(\frac{\sqrt{-a^{2} c x^{2}+c}}{\sqrt{c}}\right) \sqrt{c}+\frac{\sqrt{-a^{2} c x^{2}+c}}{3 x^{3}}+\frac{a \sqrt{-a^{2} c x^{2}+c}}{x^{2}}+\frac{5 a^{2} \sqrt{-a^{2} c x^{2}+c}}{3 x}
$$

Result (type 3, 260 leaves):

$$
\frac{\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{3 c x^{3}}+\frac{a\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{c x^{2}}+\sqrt{c} \ln \left(\frac{2 c+2 \sqrt{c} \sqrt{-a^{2} c x^{2}+c}}{x}\right) a^{3}-\sqrt{-a^{2} c x^{2}+c} a^{3}+\frac{2 a^{2}\left(-a^{2} c x^{2}+c\right)^{3 / 2}}{c x}+2 a^{4} x \sqrt{-a^{2} c x^{2}+c}
$$

$$
+\frac{2 a^{4} c \arctan \left(\frac{\sqrt{c a^{2} x}}{\sqrt{-a^{2} c x^{2}+c}}\right)}{\sqrt{c a^{2}}}+2 a^{3} \sqrt{-\left(x-\frac{1}{a}\right)^{2} a^{2} c-2\left(x-\frac{1}{a}\right) a c-\frac{\sqrt{c a^{2}} x}{(\sqrt{x})}} \sqrt{c a^{2}}
$$

Problem 201: Unable to integrate problem.

$$
\int \frac{x^{m} \sqrt{-a^{2} c x^{2}+c}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} d x
$$

Optimal(type 5, 126 leaves, 5 steps):

$$
\frac{3 x^{m} \sqrt{-a^{2} c x^{2}+c}}{a(1+m) \sqrt{1-\frac{1}{a^{2} x^{2}}}}+\frac{x^{1+m} \sqrt{-a^{2} c x^{2}+c}}{(2+m) \sqrt{1-\frac{1}{a^{2} x^{2}}}}-\frac{4 x^{m} \text { hypergeom }([1,1+m],[2+m], a x) \sqrt{-a^{2} c x^{2}+c}}{a(1+m) \sqrt{1-\frac{1}{a^{2} x^{2}}}}
$$

Result (type 8, 34 leaves):

$$
\int \frac{x^{m} \sqrt{-a^{2} c x^{2}+c}}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}} d x
$$

Problem 202: Unable to integrate problem.

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}\left(-a^{2} c x^{2}+c\right)^{2} \mathrm{~d} x
$$

Optimal(type 5, 75 leaves, 3 steps):

$$
64 c^{2}\left(1-\frac{1}{a x}\right)^{3-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-3+\frac{n}{2}} \text { hypergeom }\left(\left[6,3-\frac{n}{2}\right],\left[4-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)
$$

$$
a(6-n)
$$

Result(type 8, 23 leaves):

$$
\int \mathrm{e}^{n \operatorname{arccoth}(a x)}\left(-a^{2} c x^{2}+c\right)^{2} \mathrm{~d} x
$$

Problem 206: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x\left(-a^{2} c x^{2}+c\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 235 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{a^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}\left(1-\frac{1}{a x}\right)^{-\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{1}{2}+\frac{n}{2}} x^{3}}{(1+n)\left(-a^{2} c x^{2}+c\right)^{3 / 2}}+\frac{a^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}\left(1-\frac{1}{a x}\right)^{\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{1}{2}+\frac{n}{2}} x^{3}}{\left(-n^{2}+1\right)\left(-a^{2} c x^{2}+c\right)^{3 / 2}} \\
& -\frac{2^{\frac{1}{2}+\frac{n}{2}} a^{3}\left(1-\frac{1}{a^{2} x^{2}}\right)^{3 / 2}\left(1-\frac{1}{a x}\right)^{\frac{1}{2}-\frac{n}{2}} x^{3} \text { hypergeom }\left(\left[\frac{1}{2}-\frac{n}{2}, \frac{1}{2}-\frac{n}{2}\right],\left[\frac{3}{2}-\frac{n}{2}\right], \frac{a-\frac{1}{x}}{2 a}\right)}{(-n+1)\left(-a^{2} c x^{2}+c\right)^{3 / 2}}
\end{aligned}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)}}{x\left(-a^{2} c x^{2}+c\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 207: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)} x^{4}}{\left(-a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 411 leaves, 8 steps):
$-\frac{\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}\left(1-\frac{1}{a x}\right)^{-\frac{3}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{3}{2}+\frac{n}{2}} x^{5}}{(3+n)\left(-a^{2} c x^{2}+c\right)^{5 / 2}}-\frac{(6+n)\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}\left(1-\frac{1}{a x}\right)^{-\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{3}{2}+\frac{n}{2}} x^{5}}{(1+n)(3+n)\left(-a^{2} c x^{2}+c\right)^{5 / 2}}$

$$
\begin{aligned}
& +\frac{\left(n^{2}+6 n+15\right)\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}\left(1-\frac{1}{a x}\right)^{\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{3}{2}+\frac{n}{2}} x^{5}}{(-n+1)(1+n)(3+n)\left(-a^{2} c x^{2}+c\right)^{5 / 2}} \\
& -\frac{\left(-n^{3}-2 n^{2}+7 n+18\right)\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}\left(1-\frac{1}{a x}\right)^{\frac{3}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{3}{2}+\frac{n}{2}} x^{5}}{\left(n^{4}-10 n^{2}+9\right)\left(-a^{2} c x^{2}+c\right)^{5 / 2}} \\
& -\frac{2\left(1-\frac{1}{a^{2} x^{2}}\right)^{5 / 2}\left(1-\frac{1}{a x}\right)^{\frac{1}{2}-\frac{n}{2}}\left(1+\frac{1}{a x}\right)^{-\frac{1}{2}+\frac{n}{2}} x^{5} \operatorname{hypergeom}\left(\left[1,-\frac{1}{2}+\frac{n}{2}\right],\left[\frac{1}{2}+\frac{n}{2}\right], \frac{a+\frac{1}{x}}{a-\frac{1}{x}}\right)}{(-n+1)\left(-a^{2} c x^{2}+c\right)^{5 / 2}}
\end{aligned}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\mathrm{e}^{n \operatorname{arccoth}(a x)} x^{4}}{\left(-a^{2} c x^{2}+c\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 211: Unable to integrate problem.

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{p}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

Optimal(type 5, 112 leaves, 3 steps):

$$
\frac{\left(\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right)^{\frac{1}{2}-p}\left(1-\frac{1}{a x}\right)^{-\frac{1}{2}+p}\left(1+\frac{1}{a x}\right)^{\frac{3}{2}+p} x\left(-a^{2} c x^{2}+c\right)^{p} \text { hypergeom }\left(\left[-1-2 p, \frac{1}{2}-p\right],[-2 p], \frac{2}{\left(a+\frac{1}{x}\right) x}\right)}{(1+2 p)\left(1-\frac{1}{a^{2} x^{2}}\right)^{p}}
$$

Result(type 8, 31 leaves):

$$
\int \frac{\left(-a^{2} c x^{2}+c\right)^{p}}{\sqrt{\frac{a x-1}{a x+1}}} \mathrm{~d} x
$$

$$
\int \frac{1}{\sqrt{\frac{a x-1}{a x+1}}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 216 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{6}{5 a c^{3}\left(1-\frac{1}{a x}\right)^{5 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}-\frac{29}{15 a c^{3}\left(1-\frac{1}{a x}\right)^{3 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{x}{c^{3}\left(1-\frac{1}{a x}\right)^{5 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right)}{a c^{3}} \\
& -\frac{34}{5 a c^{3}\left(1+\frac{1}{a x}\right)^{3 / 2} \sqrt{1-\frac{1}{a x}}}+\frac{21 \sqrt{1-\frac{1}{a x}}}{5 a c^{3}\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{16 \sqrt{1-\frac{1}{a x}}}{5 a c^{3} \sqrt{1+\frac{1}{a x}}}
\end{aligned}
$$

Result(type 3, 713 leaves):

$$
\left.\left.\begin{array}{l}
240 a(a x+1)^{3} \sqrt{a^{2}}(a x-1)^{3} c^{3} \sqrt{(a x-1)(a x+1)} \sqrt{\frac{a x-1}{a x+1}}\left(-525 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{7} a^{7}\right. \\
-240 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{7} a^{8}+285((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}} x^{5} a^{5}+525 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{6} a^{6} \\
+240 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{6} a^{7}+83((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{4} a^{4}+1575 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{5} a^{5} \\
+720 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{5} a^{6}-218((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{3} a^{3}-1575 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4} \\
-\sqrt{a^{2}}
\end{array}\right) x^{4} a^{5}-342 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x^{2} a^{2}-1575 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}\right)
$$

Problem 217: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\left(c-\frac{c}{a^{2} x^{2}}\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 279 leaves, 12 steps):

$$
\begin{aligned}
& 9 a c^{4}\left(1-\frac{1}{a x}\right)^{9 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}-\frac{10}{21 a c^{4}\left(1-\frac{1}{a x}\right)^{7 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}-\frac{29}{105 a c^{4}\left(1-\frac{1}{a x}\right)^{5 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}} \\
& -\frac{1147}{315 a c^{4}\left(1-\frac{1}{a x}\right)^{3 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{208}{c^{4}\left(1-\frac{1}{a x}\right)^{9 / 2}\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{x}{3 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a x} \sqrt{1 / 2}} \sqrt{a x}\right)} \\
& -\frac{2609 \sqrt{1-\frac{1}{a x}}}{105 a c^{4}\left(1+\frac{1}{a x}\right)^{3 / 2} \sqrt{1-\frac{1}{a x}}}+\frac{315 a c^{4}\left(1+\frac{1}{a x}\right)^{3 / 2}}{}+\frac{1664 \sqrt{1-\frac{1}{a x}}}{315 a c^{4} \sqrt{1+\frac{1}{a x}}}
\end{aligned}
$$

Result(type 3, 765 leaves):

```
\(-\frac{1}{40320 a \sqrt{a^{2}}(a x-1)^{4} c^{4} \sqrt{(a x-1)(a x+1)}(a x+1)^{4}\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}\left(-138915 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{9} a^{9}\right.\)
    \(-120960 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{9} a^{10}+98595((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}} x^{7} a^{7}+416745 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{8} a^{8}\)
    \(+362880 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{8} a^{9}-75113((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}} x^{6} a^{6}-240861((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}} x^{5} a^{5}\)
    \(-1111320 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{6} a^{6}-967680 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{6} a^{7}+178863((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}} x^{4} a^{4}\)
    \(+833490 \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{5} a^{5}+725760 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{5} a^{6}+252497((a x-1)(a x+1))^{3} / 2 \sqrt{a^{2}} x^{3} a^{3}\)
    \(+833490 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{4} a^{4}+725760 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{4} a^{5}-182307 \sqrt{a^{2}}((a x-1)(a x+1))^{3} / 2 x^{2} a^{2}\)
    \(-1111320 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}-967680 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}-101271 \sqrt{a^{2}}((a x-1)(a x+1))^{3} / 2 x a\)
```

$$
\begin{aligned}
& +74077((a x-1)(a x+1))^{3 / 2} \sqrt{a^{2}}+416745 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+362880 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2} \\
& \left.-138915 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}-120960 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)
\end{aligned}
$$

Problem 223: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{a x-1}{a x+1}\right)^{3 / 2}}{c-\frac{c}{a^{2} x^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 124 leaves, 7 steps):

$$
-\frac{3 \operatorname{arctanh}\left(\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right)}{a c}+\frac{5 \sqrt{1-\frac{1}{a x}}}{3 a c\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{x \sqrt{1-\frac{1}{a x}}}{c\left(1+\frac{1}{a x}\right)^{3 / 2}}+\frac{14 \sqrt{1-\frac{1}{a x}}}{3 a c \sqrt{1+\frac{1}{a x}}}
$$

Result(type 3, 345 leaves):

$$
\begin{aligned}
& -\frac{1}{3 a \sqrt{a^{2}}(a x+1) c(a x-1) \sqrt{(a x-1)(a x+1)}}\left(\left(-9 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x^{3} a^{3}+9 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{3} a^{4}\right.\right. \\
& +6 \sqrt{a^{2}}((a x-1)(a x+1))^{3 / 2} x a-27 a^{2} \sqrt{(a x-1)(a x+1)} \sqrt{a^{2}} x^{2}+27 a^{3} \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x^{2}+5((a x-1)(a x \\
& +1))^{3 / 2} \sqrt{a^{2}}-27 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} x a+27 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) x a^{2}-9 \sqrt{a^{2}} \sqrt{(a x-1)(a x+1)} \\
& \left.\left.+9 \ln \left(\frac{a^{2} x+\sqrt{a^{2}} \sqrt{(a x-1)(a x+1)}}{\sqrt{a^{2}}}\right) a\right)\left(\frac{a x-1}{a x+1}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 228: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1)\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2}}{a x-1} \mathrm{~d} x
$$

Optimal(type 3, 185 leaves, 11 steps):

$$
\begin{aligned}
& \frac{a\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{2}}{-a x+1}-\frac{5 a^{2}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{3}}{2(-a x+1)(a x+1)}+\frac{\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x(a x+1)}{2(-a x+1)}+\frac{2 a^{2}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{3} \arcsin (a x)}{(-a x+1)^{3 / 2}(a x+1)^{3 / 2}} \\
& \quad+\frac{a^{2}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{3} \operatorname{arctanh}(\sqrt{-a x+1} \sqrt{a x+1})}{2(-a x+1)^{3 / 2}(a x+1)^{3 / 2}}
\end{aligned}
$$

Result(type 3, 454 leaves):

$$
\begin{aligned}
& \frac{1}{6\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{3 / 2} c a^{2} \sqrt{-\frac{c}{a^{2}}}}\left((\frac { c (a ^ { 2 } x ^ { 2 } - 1) } { a ^ { 2 } x ^ { 2 } }) ^ { 3 / 2 } x \left(12 a^{5} x^{3}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{3 / 2} c \sqrt{-\frac{c}{a^{2}}}-12 a^{5}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{5 / 2} x \sqrt{-\frac{c}{a^{2}}}\right.\right. \\
& \quad+4 a^{4}\left(\frac{(a x-1) c(a x+1)}{a^{2}}\right)^{3 / 2} c x^{2} \sqrt{-\frac{c}{a^{2}}}-a^{4}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{3 / 2} c x^{2} \sqrt{-\frac{c}{a^{2}}}+6 a^{3} c^{2} \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} x^{3} \sqrt{-\frac{c}{a^{2}}} \\
& -3 a^{4}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{5 / 2} \sqrt{-\frac{c}{a^{2}}}-18 a^{3} c^{2} x^{3} \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} \sqrt{-\frac{c}{a^{2}}}+18 c^{5 / 2} \ln \left(x \sqrt{c}+\sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}}\right) x^{2} a \sqrt{-\frac{c}{a^{2}}} \\
& \\
& -6 c^{5 / 2} \ln \left(\frac{\left.\sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} \sqrt{c}+c x\right)}{x^{2} a \sqrt{-\frac{c}{a^{2}}}+3 c^{2} \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} x^{2} a^{2} \sqrt{-\frac{c}{a^{2}}}}\right. \\
& \quad+3 c^{3} \ln \left(\frac{\left.2\left(\sqrt{-\frac{c}{a^{2}}} \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} a^{2}-c\right)\right)}{x a^{2}}\right)
\end{aligned}
$$

Problem 229: Result more than twice size of optimal antiderivative.

$$
\int \frac{a x+1}{(a x-1)\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 109 leaves, 7 steps):

$$
-\frac{(a x+1)^{2}}{3 a^{2}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x}+\frac{2(-2 a x+5)(-a x+1)(a x+1)^{2}}{3 a^{4}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{3}}-\frac{2(-a x+1)^{3 / 2}(a x+1)^{3 / 2} \arcsin (a x)}{a^{4}\left(c-\frac{c}{a^{2} x^{2}}\right)^{3 / 2} x^{3}}
$$

Result(type 3, 325 leaves):

$$
\begin{aligned}
& \frac{1}{3 \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} x^{3}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2} x^{2}}\right)^{3 / 2} a^{4} c^{3 / 2}}\left(\left(3 \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} c^{3 / 2} x^{3} a^{3}-15 x^{2} a^{2} \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} c^{3 / 2}\right.\right. \\
& +4 \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} c^{3 / 2} x^{2} a^{2}+6 \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} \ln \left(x \sqrt{c}+\sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}}\right) \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} x a^{2} c-4 \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} c^{3 / 2} x a \\
& \left.-6 \ln \left(x \sqrt{c}+\sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}}\right) c \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} a \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}}+12 \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} c^{3 / 2}-2 \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} c^{3 / 2}\right)(a x \\
& \\
& +1))
\end{aligned}
$$

Problem 237: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1) \sqrt{c-\frac{c}{a^{2} x^{2}}}}{(a x-1) x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 91 leaves, 7 steps):

$$
\frac{3 a \sqrt{c-\frac{c}{a^{2} x^{2}}}}{2}+\frac{(a x+1) \sqrt{c-\frac{c}{a^{2} x^{2}}}}{2 x}+\frac{3 a^{2} x \operatorname{arctanh}(\sqrt{-a x+1} \sqrt{a x+1}) \sqrt{c-\frac{c}{a^{2} x^{2}}}}{2 \sqrt{-a x+1} \sqrt{a x+1}}
$$

Result(type 3, 347 leaves):

$$
\begin{aligned}
& \frac{1}{2 x \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} c \sqrt{-\frac{c}{a^{2}}}}\left(\sqrt { \frac { c (a ^ { 2 } x ^ { 2 } - 1) } { a ^ { 2 } x ^ { 2 } } } \left(4 a^{3} x^{3} \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} c \sqrt{-\frac{c}{a^{2}}}-4 a^{3}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{3 / 2} x \sqrt{-\frac{c}{a^{2}}}\right.\right. \\
& +4 a^{2} \sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} c x^{2} \sqrt{-\frac{c}{a^{2}}}-4 a c^{3 / 2} \ln \left(x \sqrt{c}+\sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}}\right) x^{2} \sqrt{-\frac{c}{a^{2}}} \\
& \\
& +4 a c^{3 / 2} \ln \left(\frac{\sqrt{\frac{(a x-1) c(a x+1)}{a^{2}}} \sqrt{c}+c x}{\sqrt{c}}\right) x^{2} \sqrt{-\frac{c}{a^{2}}}-3 \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} a^{2} c x^{2} \sqrt{-\frac{c}{a^{2}}}-a^{2}\left(\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}\right)^{3 / 2} \sqrt{-\frac{c}{a^{2}}} \\
& \left.x^{2}\right) \\
& \\
& -3 c^{2} \ln \left(\frac{2\left(\sqrt{-\frac{c}{a^{2}}} \sqrt{\frac{c\left(a^{2} x^{2}-1\right)}{a^{2}}} a^{2}-c\right)}{x a^{2}}\right.
\end{aligned}
$$

A - 189 optimal antiderivatives
B - 82 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 50 unable to integrate problems
E - 1 integration timeouts

[^0]: Problem 26: Unable to integrate problem.

[^1]: Problem 78: Result more than twice size of optimal antiderivative.

[^2]: Problem 103: Result more than twice size of optimal antiderivative.

[^3]: Problem 108: Result more than twice size of optimal antiderivative.

[^4]: Problem 110: Result more than twice size of optimal antiderivative.

